Advertisement

Integrated DNA Methylation and Chromatin Structural Analysis at Single-Molecule Resolution

  • Carolina E. Pardo
  • Nancy H. Nabilsi
  • Russell P. Darst
  • Michael P. KladdeEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1288)

Abstract

Chromatin limits the accessibility of DNA to trans-acting factors in transcription, replication, and repair. Although transcriptional variation between cells in a population may contribute to survival and disease, most assays of chromatin structure recover only population averages. We have developed DNA methyltransferases (MTases) as probing agents of DNA accessibility in chromatin, either expressed in vivo in budding yeast or as recombinant enzymatic probes of nuclei isolated from mammalian cells. In this chapter, we focus on the use of recombinant MTase (M) M.CviPI to probe chromatin accessibility in nuclei isolated from mammalian cell lines and animal tissue. This technique, named methylation accessibility protocol for individual templates (MAPit), reports protein–DNA interactions at single-molecule resolution. The single-molecule readout allows identification of chromatin subpopulations and rare epigenetic variants within a cell population. Furthermore, the use of M.CviPI in mammalian systems gives a comprehensive view of both chromatin structure and endogenous DNA methylation in a single assay.

Key words

Chromatin DNA methylation DNA methyltransferases Footprinting Nucleosomes Single-molecule methods Transcription 

Notes

Acknowledgements

We are grateful to the Interdisciplinary Center for Biotechnology Research (ICBR) at the University of Florida for high-throughput sequencing. This work was supported by R01CA155390 from the National Cancer Institute to M.P.K. as well as 2BT01 (Team Science Project) and 1BD03 (Postdoctoral Research Fellowship) from the Florida Department of Health Bankhead-Coley Cancer Research Program to M.P.K. and N.H.N., respectively.

References

  1. 1.
    Pondugula S, Kladde MP (2008) Single-molecule analysis of chromatin: changing the view of genomes one molecule at a time. J Cell Biochem 105:330–337CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Kilgore JA, Hoose SA, Gustafson TL, Porter W, Kladde MP (2007) Single-molecule and population probing of chromatin structure using DNA methyltransferases. Methods 41:320–332CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Pardo C, Hoose SA, Pondugula S, Kladde MP (2009) DNA methyltransferase probing of chromatin structure within populations and on single molecules. Methods Mol Biol 523:41–65CrossRefPubMedGoogle Scholar
  4. 4.
    Xu M, Kladde MP, Van Etten JL, Simpson RT (1998) Cloning, characterization and expression of the gene coding for cytosine-5-DNA methyltransferase recognizing GpC sites. Nucleic Acids Res 26:3961–3966CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Kladde MP, Xu M, Simpson RT (1996) Direct study of DNA-protein interactions in repressed and active chromatin in living cells. EMBO J 15:6290–6300PubMedCentralPubMedGoogle Scholar
  6. 6.
    Xu M, Simpson RT, Kladde MP (1998) Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol Cell Biol 18:1201–1212PubMedCentralPubMedGoogle Scholar
  7. 7.
    Jessen WJ, Dhasarathy A, Hoose SA, Carvin CD, Risinger AL, Kladde MP (2004) Mapping chromatin structure in vivo using DNA methyltransferases. Methods 33:68–80CrossRefPubMedGoogle Scholar
  8. 8.
    Hoose SA, Kladde MP (2006) DNA methyltransferase probing of DNA-protein interactions. Methods Mol Biol 338:225–244PubMedGoogle Scholar
  9. 9.
    Jessen WJ, Hoose SA, Kilgore JA, Kladde MP (2006) Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 13:256–263CrossRefPubMedGoogle Scholar
  10. 10.
    Hayatsu H (1976) Bisulfite modification of nucleic acids and their constituents. Prog Nucleic Acid Res 16:75–124CrossRefGoogle Scholar
  11. 11.
    Frommer M, MacDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89:1827–1831CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol Chapter 7, Unit 7.9.1–16Google Scholar
  14. 14.
    Fatemi M, Pao MM, Jeong S, Gal-Yam EN, Egger G, Weisenberger DJ, Jones PA (2005) Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Res 33:e176CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Gal-Yam EN, Jeong S, Tanay A, Egger G, Lee AS, Jones PA (2006) Constitutive nucleosome depletion and ordered factor assembly at the GRP78 promoter revealed by single molecule footprinting. PLoS Genet 2:e160CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Lin JC, Jeong S, Liang G, Takai D, Fatemi M, Tsai YC, Jones PA et al (2007) Role of nucleosomal occupancy in the epigenetic silencing of the MLH1 CpG island. Cancer Cell 12:432–444CrossRefPubMedGoogle Scholar
  17. 17.
    Pardo CE, Carr IM, Hoffman CJ, Darst RP, Markham AF, Bonthron DT, Kladde MP (2011) MethylViewer: computational analysis and editing for bisulfite sequencing and methyltransferase accessibility protocol for individual templates (MAPit) projects. Nucleic Acids Res 39:e5CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Pardo CE, Darst RP, Nabilsi NH, Delmas AL, Kladde MP (2011) Simultaneous single-molecule mapping of protein-DNA interactions and DNA methylation by MAPit. Curr Protoc Mol Biol Chapter 21, Unit 21.22.1–18Google Scholar
  19. 19.
    Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP (2013) Epigenetic diversity of Kaposi’s sarcoma-associated herpesvirus. Nucleic Acids Res 41:2993–3009CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Wolff EM, Byun HM, Han HF, Sharma S, Nichols PW, Siegmund KD et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6:e1000917CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Kelly TK, Miranda TB, Liang G, Berman BP, Lin JC, Tanay A, Jones PA (2010) H2A.Z maintenance during mitosis reveals nucleosome shifting on mitotically silenced genes. Mol Cell 39:901–911CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Darst RP, Pardo CE, Pondugula S, Gangaraju VK, Nabilsi NH, Bartholomew B, Kladde MP (2012) Simultaneous single-molecule detection of endogenous C-5 DNA methylation and chromatin accessibility using MAPit. Methods Mol Biol 833:125–141CrossRefPubMedGoogle Scholar
  23. 23.
    Kelly TK, Liu Y, Lay FD, Liang G, Berman BP, Jones PA (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res 22:2497–2506CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Yang X, Noushmehr H, Han H, Andreu-Vieyra C, Liang G, Jones PA (2012) Gene reactivation by 5-aza-2′-deoxycytidine-induced demethylation requires SRCAP-mediated H2A.Z insertion to establish nucleosome depleted regions. PLoS Genet 8:e1002604CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Darst RP, Nabilsi NH, Pardo CE, Riva A, Kladde MP (2012) DNA methyltransferase accessibility protocol for individual templates by deep sequencing. Methods Enzymol 513:185–204CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Nabilsi NH, Deleyrolle LP, Darst RP, Riva A, Reynolds BA, Kladde MP (2014) Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma. Genome Res 24:329–339CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Warnecke PM, Stirzaker C, Song J, Grunau C, Melki JR, Clark SJ (2002) Identification and resolution of artifacts in bisulfite sequencing. Methods 27:101–107CrossRefPubMedGoogle Scholar
  28. 28.
    Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Carolina E. Pardo
    • 1
    • 2
  • Nancy H. Nabilsi
    • 1
    • 2
  • Russell P. Darst
    • 1
    • 2
  • Michael P. Kladde
    • 1
    • 2
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Florida College of MedicineGainesvilleUSA
  2. 2.UF Health Cancer Center Program in Cancer Genetics, Epigenetics and Tumor VirologyUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations