Advertisement

In Vitro Histone Demethylase Assays

  • Kenji Kokura
  • Lidong Sun
  • Jia FangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1288)

Abstract

Histone methylation plays pivotal roles in modulating chromatin structure and dynamics and in turn regulates genomic processes that require access to the DNA template. The methylation status at different sites is dynamically regulated by histone methyltransferases and demethylases. During the past decade, two classes of proteins have been characterized to actively remove methyl groups from lysine residues through different mechanisms. The LSD1/KDM1 family of amine oxidases require flavin adenine dinucleotide (FAD) for reaction, while the larger Jumonji C (JmjC) family of hydroxylases utilize Fe(II) and α-ketoglutarate as cofactors to demethylate histones. Since their discoveries, histone demethylases have been implicated in the precise control of gene expression program during development, cell identity, and fate decision. Several demethylases have also been linked to various human diseases such as neurological disorders and cancer. This chapter describes several in vitro assay conditions and detection methods for two classes of histone demethylases. We also discuss the protocols to prepare various substrates for different histone demethylase assays.

Key words

Epigenetic regulation Histone methylation Histone demethylation Histone demethylase Oxidative hydroxylation Chromatin Nucleosomes Histone 

Notes

Acknowledgments

Works in Fang lab are supported by grant from the James and Esther King Biomedical Research Program, Florida Department of Health (3KN02), and RO1CA172774 from the NIH.

References

  1. 1.
    Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705CrossRefPubMedGoogle Scholar
  2. 2.
    Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14:R546–R551CrossRefPubMedGoogle Scholar
  3. 3.
    Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev 6:838–849CrossRefGoogle Scholar
  4. 4.
    Bannister AJ, Kouzarides T (2005) Reversing histone methylation. Nature 436:1103–1106CrossRefPubMedGoogle Scholar
  5. 5.
    Cloos PA, Christensen J, Agger K, Helin K (2008) Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease. Genes Dev 22:1115–1140CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev 8:307–318CrossRefGoogle Scholar
  7. 7.
    Shi Y, Whetstine JR (2007) Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25:1–14CrossRefPubMedGoogle Scholar
  8. 8.
    Kim S, Benoiton L, Paik WK (1964) Epsilon-Alkyllysinase. Purification and properties of the enzyme. J Biol Chem 239:3790–3796PubMedGoogle Scholar
  9. 9.
    Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ et al (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553CrossRefPubMedGoogle Scholar
  10. 10.
    Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y et al (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283CrossRefPubMedGoogle Scholar
  11. 11.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953CrossRefPubMedGoogle Scholar
  12. 12.
    Falnes PO, Johansen RF, Seeberg E (2002) AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature 419:178–182CrossRefPubMedGoogle Scholar
  13. 13.
    Trewick SC, Henshaw TF, Hausinger RP, Lindahl T, Sedgwick B (2002) Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 419:174–178CrossRefPubMedGoogle Scholar
  14. 14.
    Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of JmjC domain-containing proteins. Nature 439:811–816CrossRefPubMedGoogle Scholar
  15. 15.
    Tsukada Y, Zhang Y (2006) Purification of histone demethylases from HeLa cells. Methods 40:318–326CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Fang J, Hogan GJ, Liang G, Lieb JD, Zhang Y (2007) The Saccharomyces cerevisiae histone demethylase Jhd1 fine-tunes the distribution of H3K36me2. Mol Cell Biol 27:5055–5065CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kleeberg U, Klinger W (1982) Sensitive formaldehyde determination with Nash’s reagent and a ‘tryptophan reaction’. J Pharmacol Methods 8:19–31CrossRefPubMedGoogle Scholar
  18. 18.
    Simon MD (2010) Installation of site-specific methylation into histones using methyl lysine analogs. Curr Protoc Mol Biol Chapter 21, Unit 21.18.21–10Google Scholar
  19. 19.
    Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Ausio J, van Holde KE (1986) Histone hyperacetylation: its effects on nucleosome conformation and stability. Biochemistry 25:1421–1428CrossRefPubMedGoogle Scholar
  21. 21.
    Fang J, Wang H, Zhang Y (2004) Purification of histone methyltransferases from HeLa cells. Methods Enzymol 377:213–226CrossRefPubMedGoogle Scholar
  22. 22.
    Mizzen CA, Brownell JE, Cook RG, Allis CD (1999) Histone acetyltransferases: preparation of substrates and assay procedures. Methods Enzymol 304:675–696CrossRefPubMedGoogle Scholar
  23. 23.
    Strahl BD, Ohba R, Cook RG, Allis CD (1999) Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc Natl Acad Sci U S A 96:14967–14972CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y (2001) Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 8:1207–1217CrossRefPubMedGoogle Scholar
  25. 25.
    Jia G, Wang W, Li H, Mao Z, Cai G, Sun J, Wu H, Xu M, Yang P, Yuan W et al (2009) A systematic evaluation of the compatibility of histones containing methyl-lysine analogues with biochemical reactions. Cell Res 19:1217–1220CrossRefPubMedGoogle Scholar
  26. 26.
    Kokura K, Sun L, Bedford MT, Fang J (2010) Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J 29:3673–3687CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Krishnan S, Collazo E, Ortiz-Tello PA, Trievel RC (2012) Purification and assay protocols for obtaining highly active Jumonji C demethylases. Anal Biochem 420:48–53CrossRefPubMedGoogle Scholar
  28. 28.
    Lee N, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2009) The H3K4 demethylase lid associates with and inhibits histone deacetylase Rpd3. Mol Cell Biol 29:1401–1410CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44CrossRefPubMedGoogle Scholar
  30. 30.
    Fang J, Feng Q, Ketel CS, Wang H, Cao R, Xia L, Erdjument-Bromage H, Tempst P, Simon JA, Zhang Y (2002) Purification and functional characterization of SET8, a nucleosomal histone H4-lysine 20-specific methyltransferase. Curr Biol 12:1086–1099CrossRefPubMedGoogle Scholar
  31. 31.
    Fyodorov DV, Kadonaga JT (2003) Chromatin assembly in vitro with purified recombinant ACF and NAP-1. Methods Enzymol 371:499–515CrossRefPubMedGoogle Scholar
  32. 32.
    Chen Y, Yang Y, Wang F, Wan K, Yamane K, Zhang Y, Lei M (2006) Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proc Natl Acad Sci U S A 103:13956–13961CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Klose RJ, Gardner KE, Liang G, Erdjument-Bromage H, Tempst P, Zhang Y (2007) Demethylation of histone H3K36 and H3K9 by Rph1: a vestige of an H3K9 methylation system in Saccharomyces cerevisiae? Mol Cell Biol 27:3951–3961CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Klose RJ, Yamane K, Bae Y, Zhang D, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature 442:312–316CrossRefPubMedGoogle Scholar
  35. 35.
    Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr (2007) The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 128:889–900CrossRefPubMedGoogle Scholar
  36. 36.
    Lee N, Zhang J, Klose RJ, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2007) The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nat Struct Mol Biol 14:341–343CrossRefPubMedGoogle Scholar
  37. 37.
    Tsukada Y, Nakayama KI (2010) In vitro histone demethylase assay. Cold Spring Harb Protoc 2010: pdb prot5512Google Scholar
  38. 38.
    Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y (2007) PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 25:801–812CrossRefPubMedGoogle Scholar
  39. 39.
    Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:483–495CrossRefPubMedGoogle Scholar
  40. 40.
    Agger K, Cloos PA, Christensen J, Pasini D, Rose S, Rappsilber J, Issaeva I, Canaani E, Salcini AE, Helin K (2007) UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449(7163):731–4CrossRefPubMedGoogle Scholar
  41. 41.
    Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K (2007) RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 128:1063–1076CrossRefPubMedGoogle Scholar
  42. 42.
    Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K (2006) The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442:307–311CrossRefPubMedGoogle Scholar
  43. 43.
    De Santa F, Totaro MG, Prosperini E, Notarbartolo S, Testa G, Natoli G (2007) The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130:1083–1094CrossRefPubMedGoogle Scholar
  44. 44.
    Feng W, Yonezawa M, Ye J, Jenuwein T, Grummt I (2010) PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol 17:445–450CrossRefPubMedGoogle Scholar
  45. 45.
    Fortschegger K, de Graaf P, Outchkourov NS, van Schaik FM, Timmers HT, Shiekhattar R (2010) PHF8 targets histone methylation and RNA polymerase II to activate transcription. Mol Cell Biol 30:3286–3298CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K (2007) Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A 104:18439–18444CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y (2007) The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128:1077–1088CrossRefPubMedGoogle Scholar
  48. 48.
    Kleine-Kohlbrecher D, Christensen J, Vandamme J, Abarrategui I, Bak M, Tommerup N, Shi X, Gozani O, Rappsilber J, Salcini AE et al (2010) A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell 38:165–178CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Lan F, Bayliss PE, Rinn JL, Whetstine JR, Wang JK, Chen S, Iwase S, Alpatov R, Issaeva I, Canaani E et al (2007) A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449:689–694CrossRefPubMedGoogle Scholar
  50. 50.
    Liu W, Tanasa B, Tyurina OV, Zhou TY, Gassmann R, Liu WT, Ohgi KA, Benner C, Garcia-Bassets I, Aggarwal AK et al (2010) PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466:508–512CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Qi HH, Sarkissian M, Hu GQ, Wang Z, Bhattacharjee A, Gordon DB, Gonzales M, Lan F, Ongusaha PP, Huarte M et al (2010) Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature 466:503–507CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Qiu J, Shi G, Jia Y, Li J, Wu M, Dong S, Wong J (2010) The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res 20:908–918CrossRefPubMedGoogle Scholar
  53. 53.
    Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y (2005) Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 19:857–864CrossRefPubMedGoogle Scholar
  54. 54.
    Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y (2007) The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 447:601–605CrossRefPubMedGoogle Scholar
  55. 55.
    Tsukada Y, Ishitani T, Nakayama KI (2010) KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 24:432–437CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M et al (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:467–481CrossRefPubMedGoogle Scholar
  57. 57.
    Xiang Y, Zhu Z, Han G, Lin H, Xu L, Chen CD (2007) JMJD3 is a histone H3K27 demethylase. Cell Res 17:850–857CrossRefPubMedGoogle Scholar
  58. 58.
    Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H (2006) Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 23:377–387CrossRefPubMedGoogle Scholar
  59. 59.
    Horton JR, Upadhyay AK, Qi HH, Zhang X, Shi Y, Cheng X (2010) Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol 17:38–43CrossRefPubMedCentralPubMedGoogle Scholar
  60. 60.
    Fodor BD, Kubicek S, Yonezawa M, O’Sullivan RJ, Sengupta R, Perez-Burgos L, Opravil S, Mechtler K, Schotta G, Jenuwein T (2006) Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20:1557–1562CrossRefPubMedCentralPubMedGoogle Scholar
  61. 61.
    Lizcano JM, Unzeta M, Tipton KF (2000) A spectrophotometric method for determining the oxidative deamination of methylamine by the amine oxidases. Anal Biochem 286:75–79CrossRefPubMedGoogle Scholar
  62. 62.
    Couture JF, Collazo E, Ortiz-Tello PA, Brunzelle JS, Trievel RC (2007) Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase. Nat Struct Mol Biol 14:689–695CrossRefPubMedGoogle Scholar
  63. 63.
    King ON, Li XS, Sakurai M, Kawamura A, Rose NR, Ng SS, Quinn AM, Rai G, Mott BT, Beswick P et al (2010) Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS One 5:e15535CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Sakurai M, Rose NR, Schultz L, Quinn AM, Jadhav A, Ng SS, Oppermann U, Schofield CJ, Simeonov A (2010) A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol Biosyst 6:357–364CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Chen H, Giri NC, Zhang R, Yamane K, Zhang Y, Maroney M, Costa M (2010) Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem 285:7374–7383CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Chen H, Kluz T, Zhang R, Costa M (2010) Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells. Carcinogenesis 31:2136–2144CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Sekirnik R, Rose NR, Mecinovic J, Schofield CJ (2010) 2-Oxoglutarate oxygenases are inhibited by a range of transition metals. Metallomics 2:397–399CrossRefPubMedGoogle Scholar
  68. 68.
    Fang J, Chen T, Chadwick B, Li E, Zhang Y (2004) Ring1b-mediated H2A ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. J Biol Chem 279:52812–52815CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Tumor Biology DepartmentH Lee Moffitt Cancer Center and Research InstituteTampaUSA
  2. 2.Department of Molecular OncologyH Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations