ChIP on Chip and ChIP-Seq Assays: Genome-Wide Analysis of Transcription Factor Binding and Histone Modifications

  • Smitha Pillai
  • Srikumar P. ChellappanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1288)


Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, or sequencing of DNA associated with the factors (ChIP-Seq) allow us to determine the entire spectrum of in vivo DNA binding sites for a given protein. This has been of immense value because ChIP on chip assays and ChIP-Seq experiments can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This chapter outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols; these can be easily modified to a ChIP-Seq analysis.

Key words

Whole-genome amplification Transcription factors Histone modifications Promoter arrays Next-generation sequencing 



Studies in the author’s laboratory are supported by the grants CA139612 and CA127725 from the NIH.


  1. 1.
    Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9(13):3047–3060CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9(23):6505–6525CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Hecht A, Grunstein M (1999) Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Methods Enzymol 304:399–414CrossRefPubMedGoogle Scholar
  4. 4.
    Kirmizis A, Farnham PJ (2004) Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med (Maywood) 229(8):705–721Google Scholar
  5. 5.
    Squazzo SL, O’Geen H, Komashko VM, Krig SR, Jin VX, Jang SW, Margueron R, Reinberg D, Green R, Farnham PJ (2006) Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16(7):890–900CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83(3):349–360CrossRefPubMedGoogle Scholar
  7. 7.
    Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99(13):8695–8700CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Schindler D, Waldminghaus T (2013) “Non-canonical protein-DNA interactions identified by ChIP are not artifacts”: response. BMC Genomics 14:638CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 12:134CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25(3):99–104CrossRefPubMedGoogle Scholar
  11. 11.
    Wells J, Farnham PJ (2002) Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation. Methods 26(1):48–56CrossRefPubMedGoogle Scholar
  12. 12.
    Umlauf D, Goto Y, Feil R (2004) Site-specific analysis of histone methylation and acetylation. Methods Mol Biol 287:99–120PubMedGoogle Scholar
  13. 13.
    Litt MD, Simpson M, Recillas-Targa F, Prioleau MN, Felsenfeld G (2001) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J 20(9):2224–2235CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J 13(8):1823–1830PubMedCentralPubMedGoogle Scholar
  15. 15.
    Oberley MJ, Tsao J, Yau P, Farnham PJ (2004) High-throughput screening of chromatin immunoprecipitates using CpG-island microarrays. Methods Enzymol 376:315–334CrossRefPubMedGoogle Scholar
  16. 16.
    Oberley MJ, Inman DR, Farnham PJ (2003) E2F6 negatively regulates BRCA1 in human cancer cells without methylation of histone H3 on lysine 9. J Biol Chem 278(43):42466–42476CrossRefPubMedGoogle Scholar
  17. 17.
    Bieda M, Xu X, Singer MA, Green R, Farnham PJ (2006) Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res 16(5):595–605CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Jin VX, Rabinovich A, Squazzo SL, Green R, Farnham PJ (2006) A computational genomics approach to identify cis-regulatory modules from chromatin immunoprecipitation microarray data – a case study using E2F1. Genome Res 16(12):1585–1595CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Ferea TL, Brown PO (1999) Observing the living genome. Curr Opin Genet Dev 9(6):715–722CrossRefPubMedGoogle Scholar
  20. 20.
    Sikder D, Kodadek T (2005) Genomic studies of transcription factor-DNA interactions. Curr Opin Chem Biol 9(1):38–45CrossRefPubMedGoogle Scholar
  21. 21.
    Chee M, Yang R, Hubbell E, Berno A, Huang XC, Stern D, Winkler J, Lockhart DJ, Morris MS, Fodor SP (1996) Accessing genetic information with high-density DNA arrays. Science 274(5287):610–614CrossRefPubMedGoogle Scholar
  22. 22.
    Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ et al (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116(4):499–509CrossRefPubMedGoogle Scholar
  23. 23.
    Kondo Y, Shen L, Yan PS, Huang TH, Issa JP (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci U S A 101(19):7398–7403CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Wells J, Yan PS, Cechvala M, Huang T, Farnham PJ (2003) Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 22(10):1445–1460CrossRefPubMedGoogle Scholar
  25. 25.
    Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R, Farnham PJ (2004) Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev 18(13):1592–1605CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Iyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, Brown PO (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409(6819):533–538CrossRefPubMedGoogle Scholar
  27. 27.
    Horak CE, Luscombe NM, Qian J, Bertone P, Piccirrillo S, Gerstein M, Snyder M (2002) Complex transcriptional circuitry at the G1/S transition in Saccharomyces cerevisiae. Genes Dev 16(23):3017–3033CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Horak CE, Snyder M (2002) Global analysis of gene expression in yeast. Funct Integr Genomics 2(4–5):171–180CrossRefPubMedGoogle Scholar
  29. 29.
    Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804CrossRefPubMedGoogle Scholar
  30. 30.
    Horak CE, Mahajan MC, Luscombe NM, Gerstein M, Weissman SM, Snyder M (2002) GATA-1 binding sites mapped in the beta-globin locus by using mammalian chIp-chip analysis. Proc Natl Acad Sci U S A 99(5):2924–2929CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ (2002) Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 16(2):235–244CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Reid JL, Iyer VR, Brown PO, Struhl K (2000) Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 6(6):1297–1307CrossRefPubMedGoogle Scholar
  33. 33.
    Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117(6):721–733CrossRefPubMedGoogle Scholar
  34. 34.
    Fusaro G, Dasgupta P, Rastogi S, Joshi B, Chellappan S (2003) Prohibitin induces the transcriptional activity of p53 and is exported from the nucleus upon apoptotic signaling. J Biol Chem 278(48):47853–47861CrossRefPubMedGoogle Scholar
  35. 35.
    Joshi B, Ordonez-Ercan D, Dasgupta P, Chellappan S (2005) Induction of human metallothionein 1G promoter by VEGF and heavy metals: differential involvement of E2F and metal transcription factors. Oncogene 24(13):2204–2217CrossRefPubMedGoogle Scholar
  36. 36.
    Dasgupta P, Betts V, Rastogi S, Joshi B, Morris M, Brennan B, Ordonez-Ercan D, Chellappan S (2004) Direct binding of apoptosis signal-regulating kinase 1 to retinoblastoma protein: novel links between apoptotic signaling and cell cycle machinery. J Biol Chem 279(37):38762–38769CrossRefPubMedGoogle Scholar
  37. 37.
    Thorne AW, Myers FA, Hebbes TR (2004) Native chromatin immunoprecipitation. Methods Mol Biol 287:21–44PubMedGoogle Scholar
  38. 38.
    Dorbic T, Wittig B (1986) Isolation of oligonucleosomes from active chromatin using HMG17-specific monoclonal antibodies. Nucleic Acids Res 14(8):3363–3376CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Dorbic T, Wittig B (1987) Chromatin from transcribed genes contains HMG17 only downstream from the starting point of transcription. EMBO J 6(8):2393–2399PubMedCentralPubMedGoogle Scholar
  40. 40.
    Yoshida A, Ueda T (2003) Human AP endonuclease possesses a significant activity as major 3′-5′ exonuclease in human leukemia cells. Biochem Biophys Res Commun 310(2):522–528CrossRefPubMedGoogle Scholar
  41. 41.
    Yoshida A, Urasaki Y, Waltham M, Bergman AC, Pourquier P, Rothwell DG, Inuzuka M, Weinstein JN, Ueda T, Appella E et al (2003) Human apurinic/apyrimidinic endonuclease (Ape1) and its N-terminal truncated form (AN34) are involved in DNA fragmentation during apoptosis. J Biol Chem 278(39):37768–37776CrossRefPubMedGoogle Scholar
  42. 42.
    Boyd KE, Wells J, Gutman J, Bartley SM, Farnham PJ (1998) c-Myc target gene specificity is determined by a post-DNA binding mechanism. Proc Natl Acad Sci U S A 95(23):13887–13892CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    O’Geen H, Nicolet CM, Blahnik K, Green R, Farnham PJ (2006) Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41(5):577–580CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA (2007) A chromatin landmark and transcription initiation at most promoters in human cells. Cell 130(1):77–88CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1(2):729–748CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Kurdistani SK, Grunstein M (2003) In vivo protein-protein and protein-DNA crosslinking for genomewide binding microarray. Methods 31(1):90–95CrossRefPubMedGoogle Scholar
  47. 47.
    Wu J, Smith LT, Plass C, Huang TH (2006) ChIP-chip comes of age for genome-wide functional analysis. Cancer Res 66(14):6899–6902CrossRefPubMedGoogle Scholar
  48. 48.
    Bonocora RP, Fitzgerald DM, Stringer AM, Wade JT (2013) Non-canonical protein-DNA interactions identified by ChIP are not artifacts. BMC Genomics 14:254CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Waldminghaus T, Skarstad K (2010) ChIP on Chip: surprising results are often artifacts. BMC Genomics 11:414CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11(1):31–46CrossRefPubMedGoogle Scholar
  51. 51.
    Raha D, Hong M, Snyder M (2010) ChIP-Seq: a method for global identification of regulatory elements in the genome, edited by Frederick M Ausubel et al. Curr Protoc Mol Biol Chapter 21:Unit 21.19.1–4Google Scholar
  52. 52.
    Brdlik CM, Niu W, Snyder M (2014) Chromatin immunoprecipitation and multiplex sequencing (ChIP-Seq) to identify global transcription factor binding sites in the nematode Caenorhabditis elegans. Methods Enzymol 539:89–111CrossRefPubMedGoogle Scholar
  53. 53.
    Lefrancois P, Zheng W, Snyder M (2010) ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites. Methods Enzymol 470:77–104CrossRefPubMedGoogle Scholar
  54. 54.
    Pareek CS, Smoczynski R, Tretyn A (2011) Sequencing technologies and genome sequencing. J Appl Genet 52(4):413–435CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Park PJ (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet 10(10):669–680CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Schulz S, Haussler S (2014) Chromatin immunoprecipitation for ChIP-chip and ChIP-seq. Methods Mol Biol 1149:591–605CrossRefPubMedGoogle Scholar
  57. 57.
    Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, Johnson N, Herrero J, Tomazou EM et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26(7):779–785CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung KW, Rigoutsos I, Loring J et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20(3):320–331CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Sanford JR, Wang X, Mort M, Vanduyn N, Cooper DN, Mooney SD, Edenberg HJ, Liu Y (2009) Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts. Genome Res 19(3):381–394CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Tumor BiologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations