Skip to main content

In Vitro Replication Assay with Mammalian Cell Extracts

  • Protocol
Chromatin Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1288))

  • 4831 Accesses

Abstract

Regulatory mechanisms are crucial to control DNA replication during cell cycle in eukaryotic cells. Cell-free in vitro replication assay (IVRA) is one of the widely used assays to understand the complex mammalian replication system. IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean FB, Borowiec JA, Ishimi Y, Deb S, Tegtmeyer P, Hurwitz J (1987) Simian virus 40 large tumor antigen requires three core replication origin domains for DNA unwinding and replication in vitro. Proc Natl Acad Sci U S A 84:8267–8271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Simmons DT (2000) SV40 large T antigen functions in DNA replication and transformation. Adv Virus Res 55:75–134

    Article  CAS  PubMed  Google Scholar 

  3. Coverley D, Laskey RA (1994) Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776

    Article  CAS  PubMed  Google Scholar 

  4. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  5. Blow JJ, Hodgson B (2002) Replication licensing—defining the proliferative state? Trends Cell Biol 12:72–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Alexandrow MG, Ritzi M, Pemov A, Hamlin JL (2002) A potential role for mini-chromosome maintenance (MCM) proteins in initiation at the dihydrofolate reductase replication origin. J Biol Chem 277:2702–2708

    Article  CAS  PubMed  Google Scholar 

  7. Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59–69

    Article  CAS  PubMed  Google Scholar 

  8. Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288:1643–1647

    Article  CAS  PubMed  Google Scholar 

  9. Schaarschmidt D, Ladenburger EM, Keller C, Knippers R (2002) Human Mcm proteins at a replication origin during the G1 to S phase transition. Nucleic Acids Res 30:4176–4185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. You Z, Komamura Y, Ishimi Y (1999) Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol Cell Biol 19:8003–8015

    PubMed Central  CAS  PubMed  Google Scholar 

  11. DePamphilis ML (1999) Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21:5–16

    Article  CAS  PubMed  Google Scholar 

  12. Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134

    Article  CAS  PubMed  Google Scholar 

  13. Lee DG, Bell SP (1997) Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol Cell Biol 17:7159–7168

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Mechali M (2001) DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2:640–645

    Article  CAS  PubMed  Google Scholar 

  15. McWhinney C, Leffak M (1990) Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene. Nucleic Acids Res 18:1233–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Price GB, Allarakhia M, Cossons N, Nielsen T, Diaz-Perez M, Friedlander P, Tao L, Zannis-Hadjopoulos M (2003) Identification of a cis-element that determines autonomous DNA replication in eukaryotic cells. J Biol Chem 278:19649–19659

    Article  CAS  PubMed  Google Scholar 

  17. Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255:195–197

    Article  CAS  PubMed  Google Scholar 

  18. Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R (2004) An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 23:191–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426–428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Baiker A, Maercker C, Piechaczek C, Schmidt SB, Bode J, Benham C, Lipps HJ (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2:182–184

    Article  CAS  PubMed  Google Scholar 

  21. Jenke BH, Fetzer CP, Stehle IM, Jonsson F, Fackelmayer FO, Conradt H, Bode J, Lipps HJ (2002) An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 3:349–354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Gilbert DM, Miyazawa H, DePamphilis ML (1995) Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol Cell Biol 15:2942–2954

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Hyrien O, Mechali M (1992) Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis. Nucleic Acids Res 20:1463–1469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Mahbubani HM, Paull T, Elder JK, Blow JJ (1992) DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids Res 20:1457–1462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Newport J (1987) Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48:205–217

    Article  CAS  PubMed  Google Scholar 

  26. Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120:315–328

    Article  CAS  PubMed  Google Scholar 

  27. Maiorano D, Moreau J, Mechali M (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404:622–625

    Article  CAS  PubMed  Google Scholar 

  28. Alexiadis V, Halmer L, Gruss C (1997) Influence of core histone acetylation on SV40 minichromosome replication in vitro. Chromosoma 105:324–331

    Article  CAS  PubMed  Google Scholar 

  29. Baltin J, Leist S, Odronitz F, Wollscheid HP, Baack M, Kapitza T, Schaarschmidt D, Knippers R (2006) DNA replication in protein extracts from human cells requires ORC and Mcm proteins. J Biol Chem 281:12428–12435

    Article  CAS  PubMed  Google Scholar 

  30. Haase R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, Magnusson T, Vizoso Pinto MG, Haas J, Baiker A (2010) pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 10:20

    Article  PubMed Central  PubMed  Google Scholar 

  31. Rizwani W, Alexandrow M, Chellappan S (2009) Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 8:1621–1629

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369

    Article  CAS  PubMed  Google Scholar 

  33. Ziegler K, Bui T, Frisque RJ, Grandinetti A, Nerurkar VR (2004) A rapid in vitro polyomavirus DNA replication assay. J Virol Methods 122:123–127

    Article  CAS  PubMed  Google Scholar 

  34. Gruss C (1999) In vitro replication of chromatin templates. Methods Mol Biol 119:291–302

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the Chellappan lab was supported by the grants CA63136, CA77301, CA139612, and CA127725 from the NIH. We wish to thank Mark Alexandrow, Moffitt Cancer Center, Tampa, for providing the pEPI-1 plasmid and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikumar P. Chellappan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rizwani, W., Chellappan, S.P. (2015). In Vitro Replication Assay with Mammalian Cell Extracts. In: Chellappan, S. (eds) Chromatin Protocols. Methods in Molecular Biology, vol 1288. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2474-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2474-5_20

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2473-8

  • Online ISBN: 978-1-4939-2474-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics