In Vitro Replication Assay with Mammalian Cell Extracts

  • Wasia Rizwani
  • Srikumar P. ChellappanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1288)


Regulatory mechanisms are crucial to control DNA replication during cell cycle in eukaryotic cells. Cell-free in vitro replication assay (IVRA) is one of the widely used assays to understand the complex mammalian replication system. IVRA can provide a snapshot of the regulatory mechanisms controlling replication in higher eukaryotes by using a single plasmid, pEPI-1. This chapter outlines the general strategies and protocols used to perform IVRA to study the differential recruitment of replication factors either independently or in combination, based on the experience in studying the role of prohibitin in replication as well as other published protocols. This method can be employed to identify not only proteins that assist replication but also proteins that inhibit replication of mammalian genome.

Key words

Replication assay pEPI-1 plasmid Nuclear and cytosolic extracts 



Work in the Chellappan lab was supported by the grants CA63136, CA77301, CA139612, and CA127725 from the NIH. We wish to thank Mark Alexandrow, Moffitt Cancer Center, Tampa, for providing the pEPI-1 plasmid and for helpful discussions.


  1. 1.
    Dean FB, Borowiec JA, Ishimi Y, Deb S, Tegtmeyer P, Hurwitz J (1987) Simian virus 40 large tumor antigen requires three core replication origin domains for DNA unwinding and replication in vitro. Proc Natl Acad Sci U S A 84:8267–8271CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Simmons DT (2000) SV40 large T antigen functions in DNA replication and transformation. Adv Virus Res 55:75–134CrossRefPubMedGoogle Scholar
  3. 3.
    Coverley D, Laskey RA (1994) Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776CrossRefPubMedGoogle Scholar
  4. 4.
    Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374CrossRefPubMedGoogle Scholar
  5. 5.
    Blow JJ, Hodgson B (2002) Replication licensing—defining the proliferative state? Trends Cell Biol 12:72–78CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Alexandrow MG, Ritzi M, Pemov A, Hamlin JL (2002) A potential role for mini-chromosome maintenance (MCM) proteins in initiation at the dihydrofolate reductase replication origin. J Biol Chem 277:2702–2708CrossRefPubMedGoogle Scholar
  7. 7.
    Aparicio OM, Weinstein DM, Bell SP (1997) Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59–69CrossRefPubMedGoogle Scholar
  8. 8.
    Labib K, Tercero JA, Diffley JF (2000) Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288:1643–1647CrossRefPubMedGoogle Scholar
  9. 9.
    Schaarschmidt D, Ladenburger EM, Keller C, Knippers R (2002) Human Mcm proteins at a replication origin during the G1 to S phase transition. Nucleic Acids Res 30:4176–4185CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    You Z, Komamura Y, Ishimi Y (1999) Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol Cell Biol 19:8003–8015PubMedCentralPubMedGoogle Scholar
  11. 11.
    DePamphilis ML (1999) Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21:5–16CrossRefPubMedGoogle Scholar
  12. 12.
    Bell SP, Stillman B (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357:128–134CrossRefPubMedGoogle Scholar
  13. 13.
    Lee DG, Bell SP (1997) Architecture of the yeast origin recognition complex bound to origins of DNA replication. Mol Cell Biol 17:7159–7168PubMedCentralPubMedGoogle Scholar
  14. 14.
    Mechali M (2001) DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2:640–645CrossRefPubMedGoogle Scholar
  15. 15.
    McWhinney C, Leffak M (1990) Autonomous replication of a DNA fragment containing the chromosomal replication origin of the human c-myc gene. Nucleic Acids Res 18:1233–1242CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Price GB, Allarakhia M, Cossons N, Nielsen T, Diaz-Perez M, Friedlander P, Tao L, Zannis-Hadjopoulos M (2003) Identification of a cis-element that determines autonomous DNA replication in eukaryotic cells. J Biol Chem 278:19649–19659CrossRefPubMedGoogle Scholar
  17. 17.
    Bode J, Kohwi Y, Dickinson L, Joh T, Klehr D, Mielke C, Kohwi-Shigematsu T (1992) Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science 255:195–197CrossRefPubMedGoogle Scholar
  18. 18.
    Schaarschmidt D, Baltin J, Stehle IM, Lipps HJ, Knippers R (2004) An episomal mammalian replicon: sequence-independent binding of the origin recognition complex. EMBO J 23:191–201CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Piechaczek C, Fetzer C, Baiker A, Bode J, Lipps HJ (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells. Nucleic Acids Res 27:426–428CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Baiker A, Maercker C, Piechaczek C, Schmidt SB, Bode J, Benham C, Lipps HJ (2000) Mitotic stability of an episomal vector containing a human scaffold/matrix-attached region is provided by association with nuclear matrix. Nat Cell Biol 2:182–184CrossRefPubMedGoogle Scholar
  21. 21.
    Jenke BH, Fetzer CP, Stehle IM, Jonsson F, Fackelmayer FO, Conradt H, Bode J, Lipps HJ (2002) An episomally replicating vector binds to the nuclear matrix protein SAF-A in vivo. EMBO Rep 3:349–354CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Gilbert DM, Miyazawa H, DePamphilis ML (1995) Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol Cell Biol 15:2942–2954PubMedCentralPubMedGoogle Scholar
  23. 23.
    Hyrien O, Mechali M (1992) Plasmid replication in Xenopus eggs and egg extracts: a 2D gel electrophoretic analysis. Nucleic Acids Res 20:1463–1469CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Mahbubani HM, Paull T, Elder JK, Blow JJ (1992) DNA replication initiates at multiple sites on plasmid DNA in Xenopus egg extracts. Nucleic Acids Res 20:1457–1462CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Newport J (1987) Nuclear reconstitution in vitro: stages of assembly around protein-free DNA. Cell 48:205–217CrossRefPubMedGoogle Scholar
  26. 26.
    Maiorano D, Cuvier O, Danis E, Mechali M (2005) MCM8 is an MCM2-7-related protein that functions as a DNA helicase during replication elongation and not initiation. Cell 120:315–328CrossRefPubMedGoogle Scholar
  27. 27.
    Maiorano D, Moreau J, Mechali M (2000) XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis. Nature 404:622–625CrossRefPubMedGoogle Scholar
  28. 28.
    Alexiadis V, Halmer L, Gruss C (1997) Influence of core histone acetylation on SV40 minichromosome replication in vitro. Chromosoma 105:324–331CrossRefPubMedGoogle Scholar
  29. 29.
    Baltin J, Leist S, Odronitz F, Wollscheid HP, Baack M, Kapitza T, Schaarschmidt D, Knippers R (2006) DNA replication in protein extracts from human cells requires ORC and Mcm proteins. J Biol Chem 281:12428–12435CrossRefPubMedGoogle Scholar
  30. 30.
    Haase R, Argyros O, Wong SP, Harbottle RP, Lipps HJ, Ogris M, Magnusson T, Vizoso Pinto MG, Haas J, Baiker A (2010) pEPito: a significantly improved non-viral episomal expression vector for mammalian cells. BMC Biotechnol 10:20CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Rizwani W, Alexandrow M, Chellappan S (2009) Prohibitin physically interacts with MCM proteins and inhibits mammalian DNA replication. Cell Cycle 8:1621–1629CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Hirt B (1967) Selective extraction of polyoma DNA from infected mouse cell cultures. J Mol Biol 26:365–369CrossRefPubMedGoogle Scholar
  33. 33.
    Ziegler K, Bui T, Frisque RJ, Grandinetti A, Nerurkar VR (2004) A rapid in vitro polyomavirus DNA replication assay. J Virol Methods 122:123–127CrossRefPubMedGoogle Scholar
  34. 34.
    Gruss C (1999) In vitro replication of chromatin templates. Methods Mol Biol 119:291–302PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of BiochemistryOsmania UniversityHyderabadIndia
  2. 2.Department of Tumor BiologyH. Lee Moffitt Cancer Center and Research InstituteTampaUSA

Personalised recommendations