Advertisement

Preparation and Analysis of Positioned Mononucleosomes

  • Olga I. Kulaeva
  • Vasily M. StuditskyEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1288)

Abstract

Short DNA fragments containing single nucleosomes have been extensively employed as simple model experimental systems for analysis of many intranuclear processes, including binding of proteins to nucleosomes, covalent histone modifications, transcription, DNA repair, and ATP-dependent chromatin remodeling. Here we describe several recently developed procedures for obtaining and analysis of mononucleosomes assembled on 200–350-bp DNA fragments.

Key words

Nucleosomes Chromatin Assembly Methods 

Notes

Acknowledgements

This work was supported by the NIH RO1 grant GM58650 and by the Russian Federal program grant 14.604.21.0063, RFMEFI60414X0063.

References

  1. 1.
    Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260CrossRefPubMedGoogle Scholar
  2. 2.
    Cirillo LA, Zaret KS (2004) Preparation of defined mononucleosomes, dinucleosomes, and nucleosome arrays in vitro and analysis of transcription factor binding. Methods Enzymol 375:131–158CrossRefPubMedGoogle Scholar
  3. 3.
    Kim J, Roeder RG (2011) Nucleosomal H2B ubiquitylation with purified factors. Methods 54:331–338CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Yun M, Ruan C, Huh JW, Li B (2012) Reconstitution of modified chromatin templates for in vitro functional assays. Methods Mol Biol 833:237–253CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Gaykalova DA, Kulaeva OI, Pestov NA, Hsieh FK, Studitsky VM (2012) Experimental analysis of the mechanism of chromatin remodeling by RNA polymerase II. Methods Enzymol 512:293–314CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Gaykalova DA, Kulaeva OI, Bondarenko VA, Studitsky VM (2009) Preparation and analysis of uniquely positioned mononucleosomes. Methods Mol Biol 523:109–123CrossRefPubMedGoogle Scholar
  7. 7.
    Walter W, Studitsky VM (2004) Construction, analysis, and transcription of model nucleosomal templates. Methods 33:18–24CrossRefPubMedGoogle Scholar
  8. 8.
    Walter W, Kashlev M, Studitsky VM (2004) Transcription through the nucleosome by mRNA-producing RNA polymerases. Methods Enzymol 377:445–460CrossRefPubMedGoogle Scholar
  9. 9.
    Beard BC, Smerdon MJ (2004) Analysis of DNA repair on nucleosome templates. Methods Enzymol 377:499–507CrossRefPubMedGoogle Scholar
  10. 10.
    Teng Y, Yu S, Reed SH, Waters R (2009) Lux ex tenebris: nucleotide resolution DNA repair and nucleosome mapping. Methods 48:23–34CrossRefPubMedGoogle Scholar
  11. 11.
    Rowe CE, Narlikar GJ (2010) The ATP-dependent remodeler RSC transfers histone dimers and octamers through the rapid formation of an unstable encounter intermediate. Biochemistry 49:9882–9890CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Hota SK, Bartholomew B (2012) Approaches for studying nucleosome movement by ATP-dependent chromatin remodeling complexes. Methods Mol Biol 809:367–380CrossRefPubMedGoogle Scholar
  13. 13.
    Mizuguchi G, Wu WH, Alami S, Luk E (2012) Biochemical assay for histone H2A.Z replacement by the yeast SWR1 chromatin remodeling complex. Methods Enzymol 512:275–291CrossRefPubMedGoogle Scholar
  14. 14.
    Andrews AJ, Luger K (2011) A coupled equilibrium approach to study nucleosome thermodynamics. Methods Enzymol 488:265–285CrossRefPubMedGoogle Scholar
  15. 15.
    Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K (2004) Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods Enzymol 375:23–44CrossRefPubMedGoogle Scholar
  16. 16.
    Luger K, Rechsteiner TJ, Richmond TJ (1999) Preparation of nucleosome core particle from recombinant histones. Methods Enzymol 304:3–19CrossRefPubMedGoogle Scholar
  17. 17.
    Vasudevan D, Chua EY, Davey CA (2010) Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403:1–10CrossRefPubMedGoogle Scholar
  18. 18.
    Pennings S, Meersseman G, Bradbury EM (1991) Mobility of positioned nucleosomes on 5 S rDNA. J Mol Biol 220:101–110CrossRefPubMedGoogle Scholar
  19. 19.
    Meersseman G, Pennings S, Bradbury EM (1992) Mobile nucleosomes–a general behavior. EMBO J 11:2951–2959PubMedCentralPubMedGoogle Scholar
  20. 20.
    Walter W, Kireeva ML, Studitsky VM, Kashlev M (2003) Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J Biol Chem 278: 36148–36156Google Scholar
  21. 21.
    Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM (2002) Nucleosome remodeling induced by RNA polymerase II. Loss of the H2A/H2B dimer during transcription. Mol. Cell 9:541–552Google Scholar
  22. 22.
    Wirbelauer C, Bell O, Schubeler D (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19:1761–1766CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Thiriet C, Hayes JJ (2005) Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev 19:677–682CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–1408CrossRefPubMedGoogle Scholar
  26. 26.
    Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A (2007) Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. Mol Cell 27:393–405CrossRefPubMedGoogle Scholar
  27. 27.
    Jamai A, Imoberdorf RM, Strubin M (2007) Continuous histone H2B and transcription-dependent histone H3 exchange in yeast cells outside of replication. Mol Cell 25:345–355CrossRefPubMedGoogle Scholar
  28. 28.
    Bondarenko VA, Steele LM, Ujvari A, Gaykalova DA, Kulaeva OI, Polikanov YS, Luse DS, Studitsky VM (2006) Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. Mol Cell 24:469–479CrossRefPubMedGoogle Scholar
  29. 29.
    Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kashlev M, Studitsky VM (2002) Nucleosome remodeling induced by RNA polymerase II: loss of the H2A/H2B dimer during transcription. Mol Cell 9:541–552CrossRefPubMedGoogle Scholar
  30. 30.
    Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D (2003) FACT facilitates transcription-dependent nucleosome alteration. Science 301:1090–1093CrossRefPubMedGoogle Scholar
  31. 31.
    Chang HW, Kulaeva OI, Shaytan AK, Kibanov M, Kuznedelov K, Severinov KV, Kirpichnikov MP, Clark DJ, Studitsky VM (2014) Analysis of the mechanism of nucleosome survival during transcription. Nucleic Acids Res 42:1619–1627CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Kulaeva OI, Hsieh FK, Chang HW, Luse DS, Studitsky VM (2013) Mechanism of transcription through a nucleosome by RNA polymerase II. Biochim Biophys Acta 1829:76–83CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Kulaeva OI, Gaykalova DA, Pestov NA, Golovastov VV, Vassylyev DG, Artsimovitch I, Studitsky VM (2009) Mechanism of chromatin remodeling and recovery during passage of RNA polymerase II. Nat Struct Mol Biol 16:1272–1278CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Kulaeva OI, Studitsky VM (2010) Mechanism of histone survival during transcription by RNA polymerase II. Transcription 1:85–88CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Studitsky VM, Walter W, Kireeva M, Kashlev M, Felsenfeld G (2004) Chromatin remodeling by RNA polymerases. Trends Biochem Sci 29:127–135CrossRefPubMedGoogle Scholar
  36. 36.
    Simon RH, Felsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6:689–696CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    von Holt C, Brandt WF, Greyling HJ, Lindsey GG, Retief JD, Rodrigues JD, Schwager S, Sewell BT (1989) Isolation and characterization of histones. Methods Enzymol 170:431–523CrossRefGoogle Scholar
  38. 38.
    Walter W, Kireeva ML, Tchernajenko V, Kashlev M, Studitsky VM (2003) Assay of the fate of the nucleosome during transcription by RNA polymerase II. Methods Enzymol 371:564–577CrossRefPubMedGoogle Scholar
  39. 39.
    Ausio J, Dong F, van Holde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone “tails” in the stabilization of the nucleosome. J Mol Biol 206:451–463CrossRefPubMedGoogle Scholar
  40. 40.
    Owen-Hughes T, Utley RT, Steger DJ, West JM, John S, Cote J, Havas KM, Workman JL (1999) Analysis of nucleosome disruption by ATP-driven chromatin remodeling complexes. Methods Mol Biol 119:319–331PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Cancer Epigenetics ProgramFox Chase Cancer CenterPhiladelphiaUSA
  2. 2.Biology FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations