Advertisement

Investigation of Genomic Methylation Status Using Methylation-Specific and Bisulfite Sequencing Polymerase Chain Reaction

  • Melanie A. CarlessEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1288)

Abstract

Epigenetic modification plays a central role in the regulation of gene expression and therefore in the development of disease states. In particular, genomic methylation of cytosines within CpG dinucleotides is crucial to development, gene silencing, and chromosome inactivation. Importantly, aberrant methylation profiles of various genes are associated with cancer as well as autoimmune disease, psychiatric and neurodegenerative disorders, diabetes, and heart disease. Various methods are available for the detection and quantification of methylation in a given sample. Most of these methods rely upon bisulfite conversion of DNA, which converts unmethylated cytosines to uracil, while methylated cytosines remain as cytosines. Methylation-specific amplification of DNA can be used to detect methylation at one or more (typically up to about 4) CpG sites by using primers specific to either methylated or unmethylated DNA. Alternatively, amplification of both methylated and unmethylated DNA followed by sequencing can be used to detect methylation status at multiple CpG sites. The following chapter provides protocols for bisulfite conversion of DNA, methylation-specific PCR and bisulfite sequencing PCR.

Key words

Methylation Bisulfite Polymerase chain reaction (PCR) Methylation-specific PCR (MSP) Bisulfite sequencing PCR (BSP) 

References

  1. 1.
    Park SY, Kim BH, Kim JH, Cho NY, Choi M, Yu EJ, Lee S, Kang GH (2007) Methylation profiles of CpG island loci in major types of human cancers. J Korean Med Sci 22(2):311–317CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Ducasse M, Brown MA (2006) Epigenetic aberrations and cancer. Mol Cancer 5:60CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Moss TJ, Wallrath LL (2007) Connections between epigenetic gene silencing and human disease. Mutat Res 618(1–2):163–174CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci U S A 99(6):3740–3745, 122594CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103(5):1412–1417, 1345710CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Wang Y, Leung FC (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics 20(7):1170–1177CrossRefPubMedGoogle Scholar
  7. 7.
    Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97CrossRefPubMedGoogle Scholar
  8. 8.
    Lorincz MC, Dickerson DR, Schmitt M, Groudine M (2004) Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nat Struct Mol Biol 11(11):1068–1075CrossRefPubMedGoogle Scholar
  9. 9.
    Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219, 2377394CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Rauch TA, Wu X, Zhong X, Riggs AD, Pfeifer GP (2009) A human B cell methylome at 100-base pair resolution. Proc Natl Acad Sci U S A 106(3):671–678, 2621253CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Maunakea AK, Nagarajan RP, Bilenky M et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162PubMedGoogle Scholar
  13. 13.
    Ai S, Shen L, Guo J, Feng X, Tang B (2012) DNA methylation as a biomarker for neuropsychiatric diseases. Int J Neurosci 122(4):165–176CrossRefPubMedGoogle Scholar
  14. 14.
    Abdolmaleky HM, Cheng KH, Faraone SV, Wilcox M, Glatt SJ, Gao F, Smith CL, Shafa R, Aeali B, Carnevale J, Pan H, Papageorgis P, Ponte JF, Sivaraman V, Tsuang MT, Thiagalingam S (2006) Hypomethylation of MB-COMT promoter is a major risk factor for schizophrenia and bipolar disorder. Hum Mol Genet 15(21):3132–3145CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Kim J, Kim JY, Song KS, Lee YH, Seo JS, Jelinek J, Goldschmidt-Clermont PJ, Issa JP (2007) Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys Acta 1772(1):72–80CrossRefPubMedGoogle Scholar
  16. 16.
    Maier S, Olek A (2002) Diabetes: a candidate disease for efficient DNA methylation profiling. J Nutr 132(8 Suppl):2440S–2443SPubMedGoogle Scholar
  17. 17.
    Munson K, Clark J, Lamparska-Kupsik K, Smith SS (2007) Recovery of bisulfite-converted genomic sequences in the methylation-sensitive QPCR. Nucleic Acids Res 35(9):2893–2903CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Brena RM, Huang TH, Plass C (2006) Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 84(5):365–377CrossRefPubMedGoogle Scholar
  20. 20.
    Laird PW (2010) Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet 11(3):191–203CrossRefPubMedGoogle Scholar
  21. 21.
    Shapiro R, Braverman B, Louis JB, Servis RE (1973) Nucleic acid reactivity and conformation. II. Reaction of cytosine and uracil with sodium bisulfite. J Biol Chem 248(11):4060–4064PubMedGoogle Scholar
  22. 22.
    Pattyn F, Hoebeeck J, Robbrecht P, Michels E, De Paepe A, Bottu G, Coornaert D, Herzog R, Speleman F, Vandesompele J (2006) methBLAST and methPrimerDB: web-tools for PCR based methylation analysis. BMC Bioinformatics 7:496CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Li LC, Dahiya R (2002) MethPrimer: designing primers for methylation PCRs. Bioinformatics 18(11):1427–1431CrossRefPubMedGoogle Scholar
  24. 24.
    Marshall OJ (2004) PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics 20(15):2471–2472CrossRefPubMedGoogle Scholar
  25. 25.
    Tusnady GE, Simon I, Varadi A, Aranyi T (2005) BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes. Nucleic Acids Res 33(1):e9CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93(18):9821–9826CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Texas Biomedical Research InstituteSan AntonioUSA

Personalised recommendations