Genetic Manipulation of Gyrencephalic Carnivores Using In Utero Electroporation

Part of the Neuromethods book series (NM, volume 102)


Higher mammals including primates and carnivores have developed unique brain structures, which are believed to be associated with higher brain functions. However, our molecular understanding of the formation, function and diseases related to these structures is still limited, mainly because genetic manipulations that can be applied to higher mammals had been poorly available. Here we describe a rapid and efficient method that enables in vivo genetic manipulations in the brain of gyrencephalic carnivores using in utero electroporation. Using our method, expression of transgenes becomes detectable within a few days after electroporation and persists for at least 2 months after birth. Our method is useful for expressing transgenes in neural progenitors, superficial and deep cortical post-mitotic neurons, and for examining the morphologies and axonal trajectories of GFP-expressing individual progenitors and neurons in ferrets. Furthermore, multiple genes can be efficiently co-expressed in the same progenitors and neurons. Our method promises to be a powerful tool for investigating the mechanisms underlying the development, function, and pathophysiology of neuronal structures that are unique to higher mammals.

Key words

Ferret Gyrencephalic carnivore Cerebral cortex Higher mammals In utero electroporation Neurons Neural progenitors Outer subventricular zone Inner fiber layer Outer radial glia 



We are especially thankful to the late Dr. Lawrence C. Katz for his advice at the initial phase of this project. We are grateful for Drs. Shoji Tsuji, Haruhiko Bito, Takashi Kadowaki, Eisuke Nishida, Yoshiki Sasai, and Shigetada Nakanishi for their continuous encouragement. This work was supported by Grant-in-Aid for Scientific Research from MEXT, PRESTO from JST. This work was also supported by Takeda Science Foundation and Takeda Medical Research Foundation.


  1. 1.
    Kawasaki H, Crowley JC, Livesey FJ, Katz LC (2004) Molecular organization of the ferret visual thalamus. J Neurosci 24:9962–9970CrossRefPubMedGoogle Scholar
  2. 2.
    Iwai L, Kawasaki H (2009) Molecular development of the lateral geniculate nucleus in the absence of retinal waves during the time of retinal axon eye-specific segregation. Neuroscience 159:1326–1337CrossRefPubMedGoogle Scholar
  3. 3.
    Yamamori T (2011) Selective gene expression in regions of primate neocortex: implications for cortical specialization. Prog Neurobiol 94:201–222CrossRefPubMedGoogle Scholar
  4. 4.
    Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA, Finney EM, McWhorter MME, Serikawa K, Lemon T, Morgan R, Copeland C, Smith K, Cullen V, Davis-Turak J, Lee C-K, Sunkin SM, Loboda AP, Levine DM, Stone DJ, Hawrylycz MJ, Roberts CJ, Jones AR, Geschwind DH, Lein ES (2012) Transcriptional architecture of the primate neocortex. Neuron 73:1083–1099CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, Geschwind DH, Mane SM, State MW, Sestan N (2009) Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 62:494–509CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Murray KD, Rubin CM, Jones EG, Chalupa LM (2008) Molecular correlates of laminar differences in the macaque dorsal lateral geniculate nucleus. J Neurosci 28:12010–12022CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Iwai L, Ohashi Y, van der List D, Usrey WM, Miyashita Y, Kawasaki H (2013) FoxP2 is a parvocellular-specific transcription factor in the visual thalamus of monkeys and ferrets. Cereb Cortex 23:2204–2212CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Mashiko H, Yoshida AC, Kikuchi SS, Niimi K, Takahashi E, Aruga J, Okano H, Shimogori T (2012) Comparative anatomy of marmoset and mouse cortex from genomic expression. J Neurosci 32:5039–5053CrossRefPubMedGoogle Scholar
  9. 9.
    Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246CrossRefPubMedGoogle Scholar
  10. 10.
    Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103:865–872CrossRefPubMedGoogle Scholar
  11. 11.
    Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294:1071–1074CrossRefPubMedGoogle Scholar
  12. 12.
    Sehara K, Toda T, Iwai L, Wakimoto M, Tanno K, Matsubayashi Y, Kawasaki H (2010) Whisker-related axonal patterns and plasticity of layer 2/3 neurons in the mouse barrel cortex. J Neurosci 30:3082–3092CrossRefPubMedGoogle Scholar
  13. 13.
    Ako R, Wakimoto M, Ebisu H, Tanno K, Hira R, Kasai H, Matsuzaki M, Kawasaki H (2011) Simultaneous visualization of multiple neuronal properties with single-cell resolution in the living rodent brain. Mol Cell Neurosci 48:246–257CrossRefPubMedGoogle Scholar
  14. 14.
    Petros TJ, Rebsam A, Mason CA (2009) In utero and ex vivo electroporation for gene expression in mouse retinal ganglion cells. J Vis Exp 31:e1333Google Scholar
  15. 15.
    Kawasaki H, Iwai L, Tanno K (2012) Rapid and efficient genetic manipulation of gyrencephalic carnivores using in utero electroporation. Mol Brain 5:24CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Kawasaki H, Toda T, Tanno K (2013) In vivo genetic manipulation of cortical progenitors in gyrencephalic carnivores using in utero electroporation. Biol Open 2:95–100CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Hayakawa I, Kawasaki H (2010) Rearrangement of retinogeniculate projection patterns after eye-specific segregation in mice. PLoS One 5:e11001CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199CrossRefPubMedGoogle Scholar
  19. 19.
    Sehara K, Wakimoto M, Ako R, Kawasaki H (2012) Distinct developmental principles underlie the formation of ipsilateral and contralateral whisker-related axonal patterns of layer 2/3 neurons in the barrel cortex. Neuroscience 226:289–304CrossRefPubMedGoogle Scholar
  20. 20.
    Yamasaki T, Kawasaki H, Arakawa S, Shimizu K, Shimizu S, Reiner O, Okano H, Nishina S, Azuma N, Penninger JM, Katada T, Nishina H (2011) Stress-activated protein kinase MKK7 regulates axon elongation in the developing cerebral cortex. J Neurosci 31:16872–16883CrossRefPubMedGoogle Scholar
  21. 21.
    Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22:33–41CrossRefPubMedGoogle Scholar
  22. 22.
    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268CrossRefPubMedGoogle Scholar
  23. 23.
    Deisseroth K, Feng G, Majewska AK, Miesenbock G, Ting A, Schnitzer MJ (2006) Next-generation optical technologies for illuminating genetically targeted brain circuits. J Neurosci 26:10380–10386CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K, Augustine GJ, Ehlers MD, Feng G (2007) In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–218CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154–165CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
  2. 2.Brain/Liver Interface Medicine Research CenterKanazawa UniversityKanazawaJapan

Personalised recommendations