Skip to main content

Electroporation in the Rodent Retina In Vivo and In Vitro

  • Protocol
  • First Online:
Electroporation Methods in Neuroscience

Part of the book series: Neuromethods ((NM,volume 102))

Abstract

The retina is an excellent model system for studies of neural development and disease due to its simple structure and accessibility. We have been using an electroporation technique to analyze gene structure and function rapidly and conveniently in the mouse and rat retinas in vivo and in vitro (in retinal explants). By electroporation, various types of DNA constructs are readily introduced into the retina without DNA size limitation. In addition, more than two different DNA constructs can be introduced into the same cells at once with very high co-transfection efficiency. With this technique, we have established protocols for inducible gene misexpression and knockdown, as well as conventional gene misexpression and knockdown, in the retina. These methods will be useful to reveal the molecular mechanisms of retinal development and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Price J, Turner D, Cepko C (1987) Lineage analysis in the vertebrate nervous system by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A 84:156–160

    Google Scholar 

  2. Turner DL, Cepko CL (1987) A common progenitor for neurons and glia persists in rat retina late in development. Nature 328:131–136

    Article  CAS  PubMed  Google Scholar 

  3. Miyoshi H et al (1997) Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proc Natl Acad Sci U S A 94:10319–10323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bennett J et al (1994) Adenovirus vector-mediated in vivo gene transfer into adult murine retina. Invest Ophthalmol Vis Sci 35:2535–2542

    CAS  PubMed  Google Scholar 

  5. Li T et al (1994) In vivo transfer of a reporter gene to the retina mediated by an adenoviral vector. Invest Ophthalmol Vis Sci 35:2543–2549

    CAS  PubMed  Google Scholar 

  6. Jomary C et al (1994) Adenovirus-mediated gene transfer to murine retinal cells in vitro and in vivo. FEBS Lett 347:117–122

    Article  CAS  PubMed  Google Scholar 

  7. Lamartina S et al (2007) Helper-dependent adenovirus for the gene therapy of proliferative retinopathies: stable gene transfer, regulated gene expression and therapeutic efficacy. J Gene Med 9:862–874

    Article  CAS  PubMed  Google Scholar 

  8. Ali RR et al (1996) Gene transfer into the mouse retina mediated by an adeno-associated viral vector. Hum Mol Genet 5:591–594

    Article  CAS  PubMed  Google Scholar 

  9. Chalberg TW et al (2005) PhiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci 46:2140–2146

    Article  PubMed  Google Scholar 

  10. Sato Y et al (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624

    Article  CAS  PubMed  Google Scholar 

  11. Matsuda T, Cepko CL (2004) Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101:16–22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci U S A 104:1027–1032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Johnson CJ et al (2008) Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol Vis 14:2211–2226

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Kachi S et al (2005) Nonviral ocular gene transfer. Gene Ther 12:843–851

    Article  CAS  PubMed  Google Scholar 

  15. Dezawa M et al (2002) Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. Micron 33:1–6

    Article  CAS  PubMed  Google Scholar 

  16. Huberman AD et al (2005) Ephrin-As mediate targeting of eye-specific projections to the lateral geniculate nucleus. Nat Neurosci 8:1013–1021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Garcia-Frigola C et al (2007) Gene delivery into mouse retinal ganglion cells by in utero electroporation. BMC Dev Biol 7:103

    Article  PubMed Central  PubMed  Google Scholar 

  18. Punzo C, Cepko CL (2008) Ultrasound-guided in utero injections allow studies of the development and function of the eye. Dev Dyn 237:1034–1042

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Petros TJ, Shrestha BR, Mason C (2009) Specificity and sufficiency of EphB1 in driving the ipsilateral retinal projection. J Neurosci 29:3463–3474

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Turner DL, Snyder EY, Cepko CL (1990) Lineage-independent determination of cell type in the embryonic mouse retina. Neuron 4:833–845

    Article  CAS  PubMed  Google Scholar 

  21. Anastassiadis K et al (2010) A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2. Methods Enzymol 477:109–123

    Article  CAS  PubMed  Google Scholar 

  22. Picard D (1994) Regulation of protein function through expression of chimaeric proteins. Curr Opin Biotechnol 5:511–515

    Article  CAS  PubMed  Google Scholar 

  23. Allocca M et al (2007) Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 81:11372–11380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199

    Article  CAS  PubMed  Google Scholar 

  25. Schorpp M et al (1996) The human ubiquitin C promoter directs high ubiquitous expression of transgenes in mice. Nucleic Acids Res 24:1787–1788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Caffé AR et al (2001) Mouse retina explants after long-term culture in serum free medium. J Chem Neuroanat 22:263–273

    Article  PubMed  Google Scholar 

  27. Johnson TV, Martin KR (2008) Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest Ophthalmol Vis Sci 49:3503–3512

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiko Matsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Matsuda, T. (2015). Electroporation in the Rodent Retina In Vivo and In Vitro. In: Saito, T. (eds) Electroporation Methods in Neuroscience. Neuromethods, vol 102. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2459-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2459-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2458-5

  • Online ISBN: 978-1-4939-2459-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics