Skip to main content

Targeting the Zebrafish Nervous System Using In Vivo Electroporation

  • Protocol
  • First Online:
Electroporation Methods in Neuroscience

Part of the book series: Neuromethods ((NM,volume 102))

  • 868 Accesses

Abstract

Zebrafish are a powerful model system for in vivo analysis of neural development. The degree of genetic characterization, the availability of transgenic animals, and the feasibility of in vivo imaging analysis makes zebrafish an excellent genetic model organism. In vivo electroporation has emerged as an important tool for studies examining the molecular mechanisms of neural development in zebrafish. In vivo electroporation offers precise temporal control over the induction of gain or loss of gene function because it can be used to target embryos at any developmental stage. Furthermore, in vivo electroporation allows for spatial targeting of different regions of the developing nervous system, and when combined with Gal4-based transgenic zebrafish can even target specific cell types. This chapter first outlines the basic protocol for targeting the zebrafish nervous system through electroporation, discussing the details concerning the choice of equipment, approach, and reagents. Then, a method utilizing a Gal4-based transgenic line to specifically target cells of the olfactory bulb is described in detail, and representative result are shown. Using this approach, in vivo electroporation can yield precise temporal control of genetic manipulations and can spatially target specific tissues or cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  CAS  PubMed  Google Scholar 

  2. Halpern ME, Rhee J, Goll MG et al (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5:97–110

    Article  CAS  PubMed  Google Scholar 

  3. le Trinh A, Fraser SE (2013) Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish. Dev Growth Differ 55:434–445

    Article  CAS  Google Scholar 

  4. Weber T, Köster R (2013) Genetic tools for multicolor imaging in zebrafish larvae. Methods 62:279–291

    Article  CAS  PubMed  Google Scholar 

  5. Lichtman JW, Fraser SE (2001) The neuronal naturalist: watching neurons in their native habitat. Nat Neurosci 4(Suppl):1215–1220

    Article  CAS  PubMed  Google Scholar 

  6. Muramatsu T, Mizutani Y, Ohmori Y, Okumura J (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230:376–380

    Article  CAS  PubMed  Google Scholar 

  7. Swartz M, Eberhart J, Mastick G, Krull CE (2001) Sparking new frontiers: using in vivo electroporation for genetic manipulations. Dev Biol 233:13–21

    Article  CAS  PubMed  Google Scholar 

  8. Krull CE (2004) A primer on using in ovo electroporation to analyze gene function. Dev Dyn 229:433–439

    Article  CAS  PubMed  Google Scholar 

  9. Stern CD (2005) The chick; a great model system becomes even greater. Dev Cell 8:9–17

    Article  CAS  PubMed  Google Scholar 

  10. Sauka-Spengler T, Barembaum M (2008) Gain- and loss-of-function approaches in the chick embryo. Methods Cell Biol 87:237–256

    Article  CAS  PubMed  Google Scholar 

  11. Haas K, Sin WC, Javaherian A, Li Z, Cline HT (2001) Single-cell electroporation for gene transfer in vivo. Neuron 229:583–591

    Article  Google Scholar 

  12. Haas K, Jensen K, Sin WC, Foa L, Cline HT (2002) Targeted electroporation in Xenopus tadpoles in vivo—from single cells to the entire brain. Differentiation 70:148–154

    Article  CAS  PubMed  Google Scholar 

  13. Bestman JE, Ewald RC, Chiu S, Cline HT (2006) In vivo single-cell electroporation for transfer of DNA and macromolecules. Nat Protoc 1:1267–1272

    Article  PubMed  Google Scholar 

  14. Falk J, Drinjakovic J, Leung KM, Dwivedy A, Regan AG, Piper M, Holt CE (2007) Electroporation of cDNA/Morpholinos to targeted areas of the embryonic CNS in Xenopus. BMC Dev Biol 7:107–115

    Article  PubMed Central  PubMed  Google Scholar 

  15. Teh C, Chong SW, Korzh V (2003) DNA delivery into anterior neural tube of zebrafish embryos by electroporation. Biotechniques 35:950–954

    CAS  PubMed  Google Scholar 

  16. Teh C, Parinov S, Korzh V (2005) New ways to admire zebrafish: progress in functional genomics research methodology. Biotechniques 38:897–906

    Article  CAS  PubMed  Google Scholar 

  17. Cerda GA, Thomas JE, Allende ML, Karlstrom RO, Palma V (2006) Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods 39:207–211

    Article  CAS  PubMed  Google Scholar 

  18. Hendricks M, Jesuthasan S (2007) Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development. Neural Dev 15:2–6

    Google Scholar 

  19. Kera SA, Agerwala SM, Horne JH (2010) The temporal resolution of in vivo electroporation in zebrafish: a method for time-resolved loss-of-function. Zebrafish 7:97–108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hoegler KJ, Horne JH (2010) Targeting the zebrafish optic tectum using in vivo electroporation. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5463

    PubMed Central  PubMed  Google Scholar 

  21. Hoegler KJ, Distel M, Köster RW, Horne JH (2011) Targeting olfactory bulb neurons using combined in vivo electroporation and Gal4-based enhancer trap zebrafish lines. J Vis Exp. doi:10.3791/2964

    PubMed Central  PubMed  Google Scholar 

  22. Dong Z, Wagle M, Guo S (2011) Time-lapse live imaging of clonally related neural progenitor cells in the developing zebrafish forebrain. J Vis Exp. doi:10.3791/2594

    Google Scholar 

  23. Bhatt DH, Otto SJ, Depoister B, Fetcho JR (2004) Cyclic AMP-induced repair of zebrafish spinal circuits. Science 305:254–258

    Article  CAS  PubMed  Google Scholar 

  24. Tawk M, Bianco IH, Clarke JD (2009) Focal electroporation in zebrafish embryos and larvae. Methods Mol Biol 546:145–151

    Article  CAS  PubMed  Google Scholar 

  25. Feng Y, Yan T, Zheng J et al (2010) Overexpression of Wld(S) or Nmnat2 in mauthner cells by single-cell electroporation delays axon degeneration in live zebrafish. J Neurosci Res 88:3319–3327

    Article  CAS  PubMed  Google Scholar 

  26. Kassing V, Engelmann J, Kurtz R (2013) Monitoring of single-cell responses in the optic tectum of adult zebrafish with dextran-coupled calcium dyes delivered via local electroporation. PLoS One. doi:10.1371/journal.pone.0062846

    PubMed Central  PubMed  Google Scholar 

  27. Rambabu KM, Rao SH, Rao NM (2005) Efficient expression of transgenes in adult zebrafish by electroporation. BMC Biotechnol 13:5–29

    Google Scholar 

  28. Rao NM, Rambabu KM, Rao SH (2008) Electroporation of adult zebrafish. Methods Mol Biol 423:289–298

    Article  CAS  PubMed  Google Scholar 

  29. Hyde DR, Godwin AR, Thummel R (2012) In vivo electroporation of morpholinos into the regenerating adult zebrafish tailfin. J Vis Exp. doi:10.3791/3632

    PubMed Central  PubMed  Google Scholar 

  30. McCauley DW, Bronner-Fraser M (2006) Importance of SoxE in neural crest development and the evolution of the pharynx. Nature 441:750–752

    Article  CAS  PubMed  Google Scholar 

  31. Taneyhill LA, Coles EG, Bronner-Fraser M (2007) Snail2 directly represses cadherin6B during epithelial-to-mesenchymal transitions of the neural crest. Development 134:1481–1490

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Thummel R, Bailey TJ, Hyde DR (2011) In vivo electroporation of morpholinos into the adult zebrafish retina. J Vis Exp. doi:10.3791/3603

    PubMed Central  PubMed  Google Scholar 

  33. Holmes KE, Wyatt MJ, Shen YC, Thompson DA, Barald KF (2011) Direct delivery of MIF morpholinos into the zebrafish otocyst by injection and electroporation affects inner ear development. J Vis Exp. doi:10.3791/2466

    PubMed Central  PubMed  Google Scholar 

  34. Teruel MN, Meyer T (1997) Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J 73:1785–1796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. doi:10.3791/1115

    PubMed Central  PubMed  Google Scholar 

  36. Lucas ML, Jaroszeski MJ, Gilbert R, Heller R (2001) In vivo electroporation using an exponentially enhanced pulse: a new waveform. DNA Cell Biol 20:183–188

    Article  CAS  PubMed  Google Scholar 

  37. Borges RM, Horne JH, Melo A, Vidal JT et al (2013) A detailed description of an economical setup for electroporation of chick embryos in ovo. Braz J Med Biol Res 46:752–757

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Davison JM, Akitake CM, Goll MG, Rhee JM et al (2007) Transactivation from Gal4-VP16 transgenic insertions for tissue-specific cell labeling and ablation in zebrafish. Dev Biol 304:811–824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Scott EK, Mason L, Arrenberg AB, Ziv L et al (2007) Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat Methods 4:323–326

    CAS  PubMed  Google Scholar 

  40. Distel M, Wullimann MF, Köster RW (2009) Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 106:13365–13370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Nobuhiko M, Kozo M, Tatsuya T, Shin-ichi H et al (2009) From the olfactory bulb to higher brain centers: genetic visualization of secondary olfactory pathways in zebrafish. J Neurosci 29:4756–4766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Horne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Horne, J.H. (2015). Targeting the Zebrafish Nervous System Using In Vivo Electroporation. In: Saito, T. (eds) Electroporation Methods in Neuroscience. Neuromethods, vol 102. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2459-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2459-2_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2458-5

  • Online ISBN: 978-1-4939-2459-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics