Skip to main content

RNAi-Mediated Resistance to Viruses in Genetically Engineered Plants

Part of the Methods in Molecular Biology book series (MIMB,volume 1287)

Abstract

RNA interference (RNAi) has emerged as a leading technology in designing genetically modified crops engineered to resist viral infection. The last decades have seen the development of a large number of crops whose inherent posttranscriptional gene silencing mechanism has been exploited to target essential viral genes through the production of dsRNA that triggers an endogenous RNA-induced silencing complex (RISC), leading to gene silencing in susceptible viruses conferring them with resistance even before the onset of infection. Selection and breeding events have allowed for establishing this highly important agronomic trait in diverse crops. With improved techniques and the availability of new data on genetic diversity among several viruses, significant progress is being made in engineering plants using RNAi with the release of a number of commercially available crops. Biosafety concerns with respect to consumption of RNAi crops, while relevant, have been addressed, given the fact that experimental evidence using miRNAs associated with the crops shows that they do not pose any health risk to humans and animals.

Key words

  • Biosafety
  • Gene silencing
  • Genetic engineering
  • RNA interference
  • Virus resistance

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2453-0_5
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2453-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.00
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jagtap UB, Gurab RG, Bapat VA (2011) Role of RNA interference in plant improvement. Naturwissenchaften 98:473–492

    CrossRef  CAS  Google Scholar 

  2. Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204

    CrossRef  CAS  PubMed  Google Scholar 

  3. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    CrossRef  CAS  PubMed  Google Scholar 

  4. Herr AJ (2005) Pathways through the small RNA world of plants. FEBS Lett 579:5879–5888

    CrossRef  CAS  PubMed  Google Scholar 

  5. Tenllado F, Llave C, Diaz-Ruiz JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    CrossRef  CAS  PubMed  Google Scholar 

  6. Prins M, Laimer M, Noris E et al (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  PubMed  Google Scholar 

  7. Runo S, Alakonya A, Machuka J et al (2011) RNA interference as a resistance mechanism against crop parasites in Africa: a ‘Trojan horse’ approach. Pest Manag Sci 67:129–136

    CrossRef  CAS  PubMed  Google Scholar 

  8. Prins M (2003) Broad virus resistance in transgenic plants. Trends Biotechnol 21:373–375

    CrossRef  CAS  PubMed  Google Scholar 

  9. Vanderschuren H, Stupak E, Fütterer M et al (2006) Engineering resistance to geminiviruses—review and perspectives. Plant Biotechnol J 4:1–14

    CrossRef  Google Scholar 

  10. Smith NA, Singh SP, Wang MB et al (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    CrossRef  CAS  PubMed  Google Scholar 

  11. Bucher E, Lohuis D, van Poppel PMJA et al (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    CrossRef  CAS  PubMed  Google Scholar 

  12. Faria JC, Albino MMC, Dias BBA et al (2006) Partial resistance to Bean golden mosaic virus in a transgenic common bean (Phaseolus vulgaris) line expressing a mutant rep gene. Plant Sci 171:565–571

    CrossRef  CAS  Google Scholar 

  13. Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    CrossRef  CAS  PubMed  Google Scholar 

  14. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CrossRef  CAS  PubMed  Google Scholar 

  16. Abel PP, Nelson RS, De B et al (1986) Delay of disease development in transgenic plants that express the Tobacco Mosaic Virus coat protein gene. Science 232:738–743

    CrossRef  CAS  PubMed  Google Scholar 

  17. Beachy RN, Loessch-Fries S, Tumer NE (1990) Coat protein-mediated resistance against virus infection. Annu Rev Phytopathol 28:451–472

    CrossRef  CAS  Google Scholar 

  18. Jan F-J, Fagoaga C, Pang S-Z et al (2000) A single chimeric transgene derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J Gen Virol 81:2103–2109

    CAS  PubMed  Google Scholar 

  19. Powell PA, Stark DM, Sanders PR et al (1989) Protection against Tobacco mosaic virus in transgenic plants that express Tobacco mosaic virus antisense RNA. Proc Natl Acad Sci U S A 86:6949–6952

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  20. Fagoaga C, López C, Mendoza AH et al (2006) Post-transcriptional gene silencing of the p23 silencing suppressor of Citrus tristeza virus confers resistance to the virus in transgenic Mexican lime. Plant Mol Biol 60:153–165

    CrossRef  CAS  PubMed  Google Scholar 

  21. Aragão FJL, Ibrahim AB, Tinoco ML (2013) RNA interferente. In: Borém A, Fritsche-Neto R (eds) Ômicas 360°: aplicações e estratégias para o melhoramento de plantas. Suprema, Visconde do Rio Branco, Brazil, pp 69–94

    Google Scholar 

  22. Mello CC, Conte D Jr (2004) Revealing the world of RNA interference. Nature 431:338–342

    CrossRef  CAS  PubMed  Google Scholar 

  23. Ellendorff U, Fradin EF, de Jonge R et al (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60(2):591–602

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yadav RK, Chattopadhyay D (2011) Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a geminivírus. Mol Plant Microbe Interact 24:1189–1197

    CrossRef  CAS  PubMed  Google Scholar 

  25. Akbergenov R, Si-Ammour A, Blevins T et al (2006) Molecular characterization of geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  26. Szittya G, Molnar A, Silhavy D et al (2002) Short defective interfering RNAs of tombusviruses are not targeted but trigger post-transcriptional gene silencing against their helper virus. Plant Cell 14:359–372

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kubota K, Tsuda S, Tamai A et al (2003) Tomato mosaic virus replication protein suppresses virus-targeted post-transcriptional gene silencing. J Virol 77:11016–11026

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2009) RNA silencing against geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332–1340

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  29. Aregger M, Borah BK, Seguin J et al (2012) Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog 8(9):e1002941

    CrossRef  PubMed Central  PubMed  Google Scholar 

  30. Vanderschuren H, Moreno I, Anjanappa RB et al (2012) Exploiting the combination of natural and genetically engineered resistance to cassava mosaic and cassava brown streak viruses impacting cassava production in Africa. PLoS One 7:e45277

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bonfim K, Farias JC, Nogueira EOPL et al (2007) RNAi-mediated resistance to Bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant Microbe Interact 20:717–726

    CrossRef  CAS  PubMed  Google Scholar 

  32. Aragão FJL, Faria JC (2009) Fist transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    CrossRef  PubMed  Google Scholar 

  33. Lucioli A, Noris E, Brunetti A et al (2003) Tomato yellow leaf curl Sardinia virus Rep-derived resistance to homologous and heterologous geminiviruses occurs by different mechanisms and is overcome if virus-mediated transgene silencing is activated. J Virol 77:6785–6798

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  34. Fuentes A, Ramos P, Fiallo E et al (2006) Intron-hairpin RNA derived from replication associated protein C1 gene confers immunity to Tomato yellow leaf curl virus infection in transgenic tomato plants. Transgenic Res 15:291–304

    CrossRef  CAS  PubMed  Google Scholar 

  35. Hashmi JA, Zafar Y, Arshad M et al (2011) Engineering cotton (Gossypium hirsutum L.) for resistance to cotton leaf curl disease using viral truncated AC1 DNA sequences. Virus Genes 42:286–296

    CrossRef  CAS  PubMed  Google Scholar 

  36. Duan CG, Fang YY, Zhou BJ et al (2012) Suppression of Arabidopsis ARGONAUTE1-mediated slicing, transgene-induced RNA silencing, and DNA methylation by distinct domains of the Cucumber mosaic virus 2b protein. Plant Cell 24:259–274

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  37. Beachy RN, Stark DM, Deom CM et al (1987) Expression of sequences of Tobacco Mosaic Virus in transgenic plants and their role in disease resistance. In: Bruening G et al (eds) Tailoring genes for crop improvement, vol 41, Basic life sciences. Plenum Press, New York, NY, pp 169–180

    CrossRef  Google Scholar 

  38. Song G, Sink KC, Walworth AE et al (2013) Engineering cherry rootstocks with resistance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol J 22:1–7

    CrossRef  CAS  Google Scholar 

  39. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci U S A 95:13959–13964

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  40. Missiou A, Kalantidis K, Boutla A et al (2004) Generation of transgenic potato plants highly resistant to Potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    CrossRef  CAS  Google Scholar 

  41. Schwind N, Zwiebel M, Itaya A et al (2009) RNAi-mediated resistance to potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol Plant Pathol 10:459–469

    CrossRef  CAS  PubMed  Google Scholar 

  42. Wang MB, Abbott DC, Waterhouse PM (2000) A single copy of a virus-derived transgene encoding hairpin RNA gives immunity to Barley yellow dwarf virus. Mol Plant Pathol 6:347–35644

    CrossRef  Google Scholar 

  43. Asad S, Haris WA, Bashir A et al (2003) Transgenic tobacco expressing geminiviral RNAs are resistant to the serious viral pathogen causing cotton leaf curl disease. Arch Virol 148:2341–2352

    CrossRef  CAS  PubMed  Google Scholar 

  44. Yang Y, Sherwood TA, Hiebert CP et al (2004) Use of Tomato yellow leaf curl virus (TYLCV) rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94:490–496

    CrossRef  CAS  PubMed  Google Scholar 

  45. Nazmul-Haque AKM, Tanaka Y, Sonoda S et al (2007) Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of sweet potato feathery mottle virus. Plant Mol Biol 63:35–47

    CrossRef  Google Scholar 

  46. Nahid N, Amin I, Briddon RW et al (2001) RNA interference-based resistance against a Legume mastrevirus. Virol J 8:499

    CrossRef  Google Scholar 

  47. Pooggin MM, Shivaprasad PV, Veluthambi K et al (2003) RNAi targeting of DNA virus in plants. Nat Biotechnol 21:131–132

    CrossRef  CAS  PubMed  Google Scholar 

  48. Cruz ARR, Aragão FJL (2014) RNAi-based enhanced resistance to Cowpea severe mosaic virus and Cowpea aphid-borne mosaic virus in transgenic cowpea. Plant Pathol 63:831

    CrossRef  CAS  Google Scholar 

  49. Vanderschuren H, Alder A, Zhang P et al (2009) Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava. Plant Mol Biol 70:265–272

    CrossRef  CAS  PubMed  Google Scholar 

  50. Wuriyanghan H, Falk BW (2013) RNA interference towards the potato psyllid, bactericera cockerelli, is induced in plants infected with recombinant Tobacco mosaic virus (TMV). PLoS One 86:e66050

    CrossRef  Google Scholar 

  51. Zhang X, Sato S, Ye X et al (2011) Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing separate short hairpins from a single transgene. Virology 101:1264–1269

    CAS  Google Scholar 

  52. Petrick JS, Brower-Toland B, Jackson AL et al (2013) Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review. Regul Toxicol Pharmacol 66(2):167–176

    CrossRef  CAS  PubMed  Google Scholar 

  53. Zhang L, Dongxia H, Xi C et al (2012) Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 22:107–126

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  54. O’Neill MJ, Bourre L, Melgar S et al (2011) Intestinal delivery of non-viral gene therapeutics: physiological barriers and preclinical models. Drug Discov Today 16:203–218

    CrossRef  PubMed  Google Scholar 

  55. Forbes DC, Peppas NA (2012) Oral delivery of small RNA and DNA. J Control Release 162:438–445

    CrossRef  CAS  PubMed  Google Scholar 

  56. Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  57. Dickinson B, Zhang Y, Petrick JS et al (2013) Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol 31:965–967

    CrossRef  CAS  PubMed  Google Scholar 

  58. Zhang Y, Wiggins BE, Lawrence C et al (2012) Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 13:381

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  59. Jensen PD, Zhang Y, Wiggins BE et al (2013) Computational sequence analysis of predicted long dsRNA transcriptomes of major crops reveals sequence complementarity with human genes. GM Crops Food 4:90–97

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. L. Aragão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ibrahim, A.B., Aragão, F.J.L. (2015). RNAi-Mediated Resistance to Viruses in Genetically Engineered Plants. In: Mysore, K., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 1287. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2453-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2453-0_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2452-3

  • Online ISBN: 978-1-4939-2453-0

  • eBook Packages: Springer Protocols