Skip to main content

Profiling of Small RNAs Involved in Plant–Pathogen Interactions

  • Protocol
  • First Online:
Plant Gene Silencing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1287))

Abstract

Small RNA (sRNA)-mediated gene silencing is an important gene expression regulatory mechanism conserved in eukaryotes. Such sRNAs, first discovered in plants, are involved in diverse biological processes. In plants, sRNAs participate in many growth and developmental processes, such as embryo development, seed germination, flowering, hormone synthesis and distribution, and nutrient assimilation. However, the significance of sRNA in shaping the relationship between plants and their symbiotic microbes or pathogens has been underestimated. Recent progress in profiling sRNA, especially advances in next-generation sequencing technology, has revealed its extensive and complicated involvement in interactions between plants and viruses, bacteria, and fungi. In this review, we will summarize recent findings regarding sRNA in plant–pathogen interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogers K, Chen XM (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bouche N, Lauressergues D, Gasciolli V et al (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25(14):3347–3356

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Chen X (2009) Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25:21–44

    Article  PubMed  Google Scholar 

  4. Lelandais-Briere C, Sorin C, Declerck M et al (2010) Small RNA diversity in plants and its impact in development. Curr Genomics 11(1):14–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Han YH, Luo YJ, Wu Q et al (2011) RNA-based immunity terminates viral infection in adult Drosophila in the absence of viral suppression of RNA interference: characterization of viral small interfering RNA populations in wild-type and mutant flies. J Virol 85(24):13153–13163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Padmanabhan C, Zhang X, Jin H (2009) Host small RNAs are big contributors to plant innate immunity. Curr Opin Plant Biol 12(4):465–472

    Article  CAS  PubMed  Google Scholar 

  9. Qiao Y, Liu L, Xiong Q et al (2013) Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45(3):330–333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154):118–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Zvereva AS, Pooggin MM (2012) Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4(11):2578–2597

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Seo JK, Wu J, Lii Y et al (2013) Contribution of small RNA pathway components in plant immunity. Mol Plant Microbe Interact 26(6):617–625

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136(4):669–687

    Article  CAS  PubMed  Google Scholar 

  14. Klevebring D, Street NR, Fahlgren N et al (2009) Genome-wide profiling of populus small RNAs. BMC Genomics 10:620

    Article  PubMed Central  PubMed  Google Scholar 

  15. Li F, Pignatta D, Bendix C et al (2012) MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci U S A 109(5):1790–1795

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Shivaprasad PV, Chen HM, Patel K et al (2012) A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24(3):859–874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Zhai J, Jeong DH, De Paoli E et al (2011) MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25(23):2540–2553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    Article  CAS  PubMed  Google Scholar 

  19. Gohre V, Robatzek S (2008) Breaking the barriers: microbial effector molecules subvert plant immunity. Annu Rev Phytopathol 46:189–215

    Article  PubMed  Google Scholar 

  20. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  CAS  PubMed  Google Scholar 

  21. Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci U S A 105(38):14732–14737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Deleris A, Gallego-Bartolome J, Bao J et al (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313(5783):68–71

    Article  CAS  PubMed  Google Scholar 

  23. Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang W, Gao S, Zhou X et al (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1–2):93–105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Montgomery TA, Howell MD, Cuperus JT et al (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133(1):128–141

    Article  CAS  PubMed  Google Scholar 

  26. Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133(1):116–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhang X, Zhang X, Singh J et al (2012) Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J Virol 86(12):6847–6854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Haas G, Azevedo J, Moissiard G et al (2008) Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4. EMBO J 27(15):2102–2112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Vazquez F, Gasciolli V, Crete P et al (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14(4):346–351

    Article  CAS  PubMed  Google Scholar 

  30. Katiyar-Agarwal S, Gao S, Vivian-Smith A et al (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21(23):3123–3134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103(47):18002–18007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Garcia D, Garcia S, Pontier D et al (2012) Ago hook and RNA helicase motifs underpin dual roles for SDE3 in antiviral defense and silencing of nonconserved intergenic regions. Mol Cell 48(1):109–120

    Article  CAS  PubMed  Google Scholar 

  33. Hernandez-Pinzon I, Yelina NE, Schwach F et al (2007) SDE5, the putative homologue of a human mRNA export factor, is required for transgene silencing and accumulation of trans-acting endogenous siRNA. Plant J 50(1):140–148

    Article  CAS  PubMed  Google Scholar 

  34. Muangsan N, Beclin C, Vaucheret H et al (2004) Geminivirus VIGS of endogenous genes requires SGS2/SDE1 and SGS3 and defines a new branch in the genetic pathway for silencing in plants. Plant J 38(6):1004–1014

    Article  CAS  PubMed  Google Scholar 

  35. Agorio A, Vera P (2007) ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell 19(11):3778–3790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Li Y, Zhang Q, Zhang J et al (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222–2231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Takeda A, Iwasaki S, Watanabe T et al (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49(4):493–500

    Article  CAS  PubMed  Google Scholar 

  38. Zhang X, Zhao H, Gao S et al (2011) Arabidopsis Argonaute 2 regulates innate immunity via miRNA393-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol Cell 42(3):356–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439

    Article  CAS  PubMed  Google Scholar 

  40. Ellendorff U, Fradin EF, de Jonge R et al (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60(2):591–602

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lopez A, Ramirez V, Garcia-Andrade J et al (2011) The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet 7(12):e1002434

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Yu A, Lepere G, Jay F et al (2013) Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense. Proc Natl Acad Sci U S A 110(6):2389–2394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109(32):E2183–E2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Baumberger N, Tsai CH, Lie M et al (2007) The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 17(18):1609–1614

    Article  CAS  PubMed  Google Scholar 

  45. Azevedo J, Garcia D, Pontier D et al (2010) Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev 24(9):904–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Blevins T, Rajeswaran R, Shivaprasad PV et al (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34(21):6233–6246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhu S, Jeong RD, Lim GH et al (2013) Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Rep 4(6):1168–1184

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Yuan YR, Pei Y et al (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 20(23):3255–3268

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Varallyay E, Valoczi A, Agyi A et al (2010) Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. EMBO J 29(20):3507–3519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Bortolamiol D, Pazhouhandeh M, Ziegler-Graff V (2008) Viral suppression of RNA silencing by destabilisation of ARGONAUTE 1. Plant Signal Behav 3(9):657–659

    Article  PubMed Central  PubMed  Google Scholar 

  51. Du P, Wu J, Zhang J et al (2011) Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog 7(8):e1002176

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Donaire L, Barajas D, Martinez-Garcia B et al (2008) Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol 82(11):5167–5177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Garcia-Ruiz H, Takeda A, Chapman EJ et al (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22(2):481–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Raja P, Sanville BC, Buchmann RC et al (2008) Viral genome methylation as an epigenetic defense against geminiviruses. J Virol 82(18):8997–9007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Bian XY, Rasheed MS, Seemanpillai MJ et al (2006) Analysis of silencing escape of tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe Interact 19(6):614–624

    Article  CAS  PubMed  Google Scholar 

  56. Caplan JL, Mamillapalli P, Burch-Smith TM et al (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132(3):449–462

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Tameling WI, Nooijen C, Ludwig N et al (2010) RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22(12):4176–4194

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Jeong RD, Chandra-Shekara AC, Kachroo A et al (2008) HRT-mediated hypersensitive response and resistance to Turnip crinkle virus in Arabidopsis does not require the function of TIP, the presumed guardee protein. Mol Plant Microbe Interact 21(10):1316–1324

    Article  CAS  PubMed  Google Scholar 

  59. He XF, Fang YY, Feng L et al (2008) Characterization of conserved and novel microRNAs and their targets, including a TuMV-induced TIR-NBS-LRR class R gene-derived novel miRNA in Brassica. FEBS Lett 582(16):2445–2452

    Article  CAS  PubMed  Google Scholar 

  60. Navarro L, Jay F, Nomura K et al (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321(5891):964–967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009–1014

    Article  CAS  PubMed  Google Scholar 

  62. Fahlgren N, Howell MD, Kasschau KD et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219

    Article  PubMed Central  PubMed  Google Scholar 

  63. Pavet V, Quintero C, Cecchini NM et al (2006) Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae. Mol Plant Microbe Interact 19(6):577–587

    Article  CAS  PubMed  Google Scholar 

  64. Zheng X, Pontes O, Zhu J et al (2008) ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455(7217):1259–1262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Lu S, Sun YH, Amerson H et al (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51(6):1077–1098

    Article  CAS  PubMed  Google Scholar 

  66. Subramanian S, Fu Y, Sunkar R et al (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genomics 9:160

    Article  PubMed Central  PubMed  Google Scholar 

  67. Radwan O, Liu Y, Clough SJ (2011) Transcriptional analysis of soybean root response to Fusarium virguliforme, the causal agent of sudden death syndrome. Mol Plant Microbe Interact 24(8):958–972

    Article  CAS  PubMed  Google Scholar 

  68. Yin Z, Li Y, Han X et al (2012) Genome-wide profiling of miRNAs and other small non-coding RNAs in the Verticillium dahliae-inoculated cotton roots. PLoS One 7(4):e35765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Xin M, Wang Y, Yao Y et al (2010) Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biol 10:123

    Article  PubMed Central  PubMed  Google Scholar 

  70. Guo N, Ye WW, Wu XL et al (2011) Microarray profiling reveals microRNAs involving soybean resistance to Phytophthora sojae. Genome 54(11):954–958

    Article  CAS  PubMed  Google Scholar 

  71. Nowara D, Gay A, Lacomme C et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22(9):3130–3141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Pliego C, Nowara D, Bonciani G et al (2013) Host-induced gene silencing in barley powdery mildew reveals a class of ribonuclease-like effectors. Mol Plant Microbe Interact 26(6):633–642

    Article  CAS  PubMed  Google Scholar 

  73. Harvey JJ, Lewsey MG, Patel K et al (2011) An antiviral defense role of AGO2 in plants. PLoS One 6:e14639. doi: 10.1371/journal.pone.0014639

  74. Fahlgren N, Montgomery TA, Howell MD et al (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    Google Scholar 

Download references

Acknowledgments

This work was supported by Fundamental Research Funds for the Central Universities (Y201200616) and by Research Fund for the Doctoral Program of Higher Education (B0201300664) to HZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Niu, D., Wang, Z., Wang, S., Qiao, L., Zhao, H. (2015). Profiling of Small RNAs Involved in Plant–Pathogen Interactions. In: Mysore, K., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 1287. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2453-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2453-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2452-3

  • Online ISBN: 978-1-4939-2453-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics