Advertisement

Lipid and Lipoarabinomannan Isolation and Characterization

  • Marie-Antoinette Lanéelle
  • Jérôme Nigou
  • Mamadou DafféEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1285)

Abstract

Mycobacteria are microorganisms that contain a very high content of structurally diverse lipids, some of them being biologically active substances. As such the lipid composition is commonly used to characterize mycobacterial strains at the species and type-species level. This chapter describes the methods that allow the purification of the most commonly isolated biologically active lipids and those used for analyzing extractable lipids and their constituents, cell wall-linked mycolic acids and lipoarabinomannan (LAM). The latter involve simple chromatographic and analytical techniques, such as thin-layer chromatography and gas chromatography coupled to mass spectrometry.

Key words

Lipids Glycolipids Mycolic acids Cell wall Lipid analysis 

References

  1. 1.
    Goren M, Brennan PJ (1979) Mycobacterial lipids: chemistry and biological activities. In: Youmans GP (ed) Tuberculosis. W.B. Saunders Company, Philadelphia, pp 63–193Google Scholar
  2. 2.
    Jarlier V, Nikaido H (1990) Permeability barrier to hydrophilic solutes in Mycobacterium chelonei. J Bacteriol 172:1418–1423CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Daffé M, Zuber B (2014) The fascinating coat surrounding mycobacteria. In: Remaut H, Fronzes R (eds) Bacterial membranes: structural and molecular biology. Horizon Scientific, Norfolk, pp 179–192Google Scholar
  4. 4.
    Marrakchi H, Lanéelle MA, Daffé M (2014) Mycolic acids: structures, biosynthesis and beyond. Chem Biol 21:67–45CrossRefPubMedGoogle Scholar
  5. 5.
    Brennan PJ (1988) Mycobacterium and other actinomycetes. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 203–298Google Scholar
  6. 6.
    Daffé M, Lemassu A (2000) Glycomicrobiology of the mycobacterial cell surface: structure and biological activities of the cell envelope glycoconjugates. In: Doyle RJ (ed) Glycomicrobiology. Plenum, New York, pp 225–273Google Scholar
  7. 7.
    Minnikin DE, Kremer L, Dover LG et al (2002) The methyl-branched fortifications of Mycobacterium tuberculosis. Chem Biol 9:545–553CrossRefPubMedGoogle Scholar
  8. 8.
    Asselineau J (1991) Bacterial lipids containing amino acids of peptides linked by amide bonds. In: Hertz W, Grisebach H, Kirby GW, Tamm CH (eds) Progress in the chemistry of organic natural products, vol 56. Springer, Vienna, pp 1–85Google Scholar
  9. 9.
    Etémadi AH (1967) Isomérisation de mycolates de méthyle en milieu alcalin. Chem Phys Lipids 1:165–175CrossRefGoogle Scholar
  10. 10.
    Toubiana R, Berlan J, Sato H et al (1979) Three types of mycolic acid from Mycobacterium tuberculosis Brévanne: implications for structure-function relationships in pathogenesis. J Bacteriol 139:205–211PubMedPubMedCentralGoogle Scholar
  11. 11.
    Daffé M, Lanéelle MA, Puzo G et al (1981) Acide mycolique époxydique : un nouveau type d’acide mycolique. Tetrahedron Lett 22:4515–4516CrossRefGoogle Scholar
  12. 12.
    Minnikin DE, Minnikin SM, Goodfellow M (1982) The oxygenated mycolic acids of Mycobacterium fortuitum, M. farcinogenes and M. senegalense. Biochim Biophys Acta 712:616–620CrossRefGoogle Scholar
  13. 13.
    Odham G, Stenhagen E (1972) Fatty acids. In: Waller GR (ed) Biochemical applications of mass spectrometry. Wiley Interscience, New York, pp 211–228Google Scholar
  14. 14.
    Asselineau J, Ryhage R, Stenhagen E (1957) Mass spectrometry studies of long chain methyl esters. A determination of the molecular weight and structure of mycocerosic acid. Acta Chem Scand 11:196–198CrossRefGoogle Scholar
  15. 15.
    Ryhage R, Ställerg-Stenhagen S, Stenhagen E (1961) Esters of phthienoic acids. Ark Kemi 18:179–188Google Scholar
  16. 16.
    Puzo G, Promé JC (1973) Fragmentation des aldéhydes cyclopropaniques en spectrométrie de masse. Intervention d’interactions bifonctionnelles. Tetrahedron 29:3619–3629CrossRefGoogle Scholar
  17. 17.
    Asselineau C, Clavel S, Clément F et al (1981) Constituants lipidiques de Mycobacterium leprae isolé de tatou infecté expérimentalement. Ann Microbiol (Paris) 132A:19–30Google Scholar
  18. 18.
    Quémard A, Lanéelle MA, Marrakchi H et al (1997) Structure of a hydroxymycolic acid potentially involved in the synthesis of oxygenated mycolic acids of the Mycobacterium tuberculosis complex. Eur J Biochem 250:758–763CrossRefPubMedGoogle Scholar
  19. 19.
    Watanabe M, Aoyagi Y, Mitome H et al (2002) Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology 148:1881–1902CrossRefPubMedGoogle Scholar
  20. 20.
    Laval F, Lanéelle MA, Déon C et al (2001) Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem 73:4537–4544CrossRefPubMedGoogle Scholar
  21. 21.
    Shui G, Bendt AK, Pethe K et al (2007) Sensitive profiling of chemically diverse bioactive lipids. J Lipid Res 48:1976–1984CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu FF, Soehl K, Turk J et al (2011) Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. Anal Biochem 409:112–122CrossRefPubMedGoogle Scholar
  23. 23.
    Daffé M, Lanéelle MA, Puzo G (1983) Structural elucidation by field desorption and electron-impact mass spectrometry of the C-mycosides isolated from Mycobacterium smegmatis. Biochim Biophys Acta 751:439–443CrossRefPubMedGoogle Scholar
  24. 24.
    Lopez-Marin LM, Promé D, Lanéelle MA et al (1992) Fast-atom bombardment mass spectrometry of mycobacterial glycopeptidolipid antigens: structural characterization by charge remote fragmentation. J Am Soc Mass Spectrom 3:656–661CrossRefPubMedGoogle Scholar
  25. 25.
    Lopez-Marin LM, Lanéelle MA, Promé D et al (1992) Structure of a novel sulfate-containing mycobacterial glycolipid. Biochemistry 31:11106–11111CrossRefPubMedGoogle Scholar
  26. 26.
    Hsu FF, Pacheco S, Turk J et al (2012) Structural determination of glycopeptidolipids of Mycobacterium smegmatis by high resolution multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Mass Spectrom 47:1269–1281CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Gilleron M, Quesniaux VFJ, Puzo G (2003) Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv and its implication in toll-like receptor response. J Biol Chem 278:29880–29889CrossRefPubMedGoogle Scholar
  28. 28.
    Gilleron M, Lindner B, Puzo G (2006) MS/MS approach for characterization of the fatty acid distribution on mycobacterial phosphatidyl-myo-inositol mannosides. Anal Chem 78:8543–8548CrossRefPubMedGoogle Scholar
  29. 29.
    Layre E, Gala-De PD, Larrouy-Maumus G et al (2011) Deciphering sulfoglycolipids of Mycobacterium tuberculosis. J Lipid Res 52:1098–1110CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hsu FF, Turk J (2004) Studies on sulfatides by quadrupole ion-trap mass spectrometry with electrospray ionization: structural characterization and the fragment processes that include an unusual internal galactose residue loss and the classical charge remote fragmentation. J Am Soc Mass Spectrom 15:536–546CrossRefPubMedGoogle Scholar
  31. 31.
    Rhoades RR, Streeter C, Turk J et al (2011) Characterization of sulfolipids of Mycobacterium tuberculosis H37Rv by multiple-stage linear ion trap high resolution mass spectrometry with electrospray ionization reveals that family of sulfolipid II predominates. Biochemistry 50:9135–9147CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Camacho LR, Constant P, Raynaud C et al (2001) Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 276:19845–19854CrossRefPubMedGoogle Scholar
  33. 33.
    Constant P, Perez E, Malaga W et al (2002) Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. J. Biol Chem 277:38148–38158CrossRefPubMedGoogle Scholar
  34. 34.
    Fujita Y, Naka T, Doi T et al (2005) Direct molecular mass determination of trehalose monomycolates from 11 species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:1443–1452CrossRefPubMedGoogle Scholar
  35. 35.
    Fujita Y, Naka T, McNeil MR et al (2005) Intact molecular characterization of cord factor (trehalose 6,6′-dimycolatee) from nine species of mycobacteria by MALDI-TOF mass spectrometry. Microbiology 151:3403–3416CrossRefPubMedGoogle Scholar
  36. 36.
    Hsu FF, Wohlmann J, Turk J et al (2012) Structural definition of trehalose 6-monomycolates and trehalose 6,6′-dimycolates from the pathogen Rhodococcus equi by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Am Soc Mass Spectrom 22:2160–2170CrossRefGoogle Scholar
  37. 37.
    Asselineau C, Tocanne G, Tocanne JF (1970) Stéréochimie des acides mycoliques. Bull Soc Chim Fr 4:1455–1459Google Scholar
  38. 38.
    Rafidinarivo E, Promé JC, Lévy-Frébault V (1985) New kinds of unsaturated mycolic acids from Mycobacterium fallax sp. nov. Chem Phys Lipids 36:215–228CrossRefGoogle Scholar
  39. 39.
    Lacave C, Lanéelle MA, Daffé M et al (1987) Structure and metabolic study of the mycolic acids of Mycobacterium fortuitum. Eur J Biochem 163:369–378CrossRefPubMedGoogle Scholar
  40. 40.
    Lanéelle MA, Lacave C, Daffé M et al (1988) Mycolic acids of Mycobacterium aurum. Structure and biogenetic implications. Eur J Biochem 177:631–635CrossRefPubMedGoogle Scholar
  41. 41.
    Lanéelle MA, Lacave C, Daffé M et al (1989) Mycolic acid metabolic filiation and location in Mycobacterium aurum and Mycobacterium phlei. Eur J Biochem 181:459–466CrossRefPubMedGoogle Scholar
  42. 42.
    Daffé M, Lanéelle MA, Lacave C (1991) Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. Res Microbiol 142:397–403CrossRefPubMedGoogle Scholar
  43. 43.
    Daffé M, Lanéelle MA (1988) Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria. J Gen Microbiol 134:2043–2055Google Scholar
  44. 44.
    Asselineau J (1982) Branched fatty acids of mycobacteria. Ind J Chest Dis 24:143–157Google Scholar
  45. 45.
    Geerdink D, ter Horst B, Lepore M et al (2013) Total synthesis, stereochemical elucidation and biological evaluation of Ac2 SGL; a 1,3-methyl branched sulfoglycolipid from Mycobacterium tuberculosis. Chem Sci 4:709–716CrossRefGoogle Scholar
  46. 46.
    Daffé M, Lacave C, Lanéelle MA et al (1988) Polyphthienoyl trehalose, glycolipids specific for virulent strains of the tubercle bacillus. Eur J Biochem 172:579–584CrossRefPubMedGoogle Scholar
  47. 47.
    Dittmer JC, Lester RL (1964) A simple, specific method for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5:126–127PubMedGoogle Scholar
  48. 48.
    Sauton B (1912) Sur la nutrition minérale du bacille tuberculeux. C R Acad Sci Ser III Sci Vie 155:860–863Google Scholar
  49. 49.
    Brennan PJ, Goren M (1979) Structural studies on the type specific antigens and lipids of the Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum serocomplex. J Biol Chem 254:4205–4211PubMedGoogle Scholar
  50. 50.
    Daffé M, Lanéelle MA, Asselineau C et al (1983) Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis. Ann Microbiol (Inst Pasteur) 134:241–256CrossRefGoogle Scholar
  51. 51.
    Kates M (1986) Techniques of lipidology. Isolation, analysis and identification of lipids. In: Burdon RH, van Knippenberg PH (eds) Laboratory techniques in biochemistry and molecular biology, vol 3. Elsevier, AmsterdamGoogle Scholar
  52. 52.
    Watanabe M, Aoyagi Y, Ridell M et al (2001) Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–1837CrossRefPubMedGoogle Scholar
  53. 53.
    Nigou J, Gilleron M, Brando T et al (2004) Structural analysis of mycobacterial lipoglycans. Appl Biochem Biotechnol 118:253–268CrossRefPubMedGoogle Scholar
  54. 54.
    Nigou J, Zelle-Rieser C, Gilleron M et al (2001) Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 166:7477–7485CrossRefPubMedGoogle Scholar
  55. 55.
    Nigou J, Gilleron M, Cahuzac B et al (1997) The phosphatidyl-myo-inositol anchor of the lipoarabinomannans from Mycobacterium bovis Bacillus Calmette Guérin. Heterogeneity, structure, and role in the regulation of cytokine secretion. J Biol Chem 272:23094–23103CrossRefPubMedGoogle Scholar
  56. 56.
    Gilleron M, Bala L, Brando T et al (2000) Mycobacterium tuberculosis H37Rv parietal and cellular lipoarabinomannans. Characterization of the acyl- and glyco-forms. J Biol Chem 275:677–684CrossRefPubMedGoogle Scholar
  57. 57.
    Nigou J, Gilleron M, Puzo G (2003) Lipoarabinomannans: from structure to biosynthesis. Biochimie 85:153–166CrossRefPubMedGoogle Scholar
  58. 58.
    Chatterjee D, Khoo KH (1998) Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 8:113–120CrossRefPubMedGoogle Scholar
  59. 59.
    Nigou J, Vercellone A, Puzo G (2000) New structural insights into the molecular deciphering of mycobacterial lipoglycan binding to C-type lectins: lipoarabinomannan glycoform characterization and quantification by capillary electrophoresis at the subnanomole level. J Mol Biol 299:1353–1362CrossRefPubMedGoogle Scholar
  60. 60.
    Guilhot C, Daffé M (2008) Polyketides and polyketides-containing glycolipids of M. tuberculosis: structure, biosynthesis and biological activities. In: Kaufman SGH, Rubin EJ (eds) Handbook of tuberculosis: molecular biology and biochemistry, vol 1. Wiley-VCH Verlag GmBH & Co. GaA, Weinheim, pp 21–51Google Scholar
  61. 61.
    Layre E, Collman A, Bastian M et al (2009) Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem Biol 16:82–92CrossRefPubMedGoogle Scholar
  62. 62.
    Soto CY, Cama M, Gibert I et al (2000) Application of an easy and reliable method for sulfolipid-I in the study of its distribution in Mycobacterium tuberculosis strains. FEMS Microbiol Lett 187:103–107CrossRefPubMedGoogle Scholar
  63. 63.
    Lanéelle MA, Promé D, Lanéelle G et al (1990) Ornithine lipid of Mycobacterium tuberculosis: its distribution in some slow- and fast-growing mycobacteria. J Gen Microbiol 136:773–778CrossRefPubMedGoogle Scholar
  64. 64.
    Minnikin DE, Minnikin SM, Parlett JH et al (1984) Mycolic acid patterns of some species of Mycobacterium. Arch Microbiol 189:225–231CrossRefGoogle Scholar
  65. 65.
    Minnikin DE, Parlett JH, Magnusson M et al (1984) Mycolic Acid patterns of representatives of Mycobacterium bovis BCG. J Gen Microbiol 130:2733–2736PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marie-Antoinette Lanéelle
    • 1
    • 2
  • Jérôme Nigou
    • 1
    • 2
  • Mamadou Daffé
    • 1
    • 2
    Email author
  1. 1.Tuberculosis & Infection Biology Department, Institut de Pharmacologie et de BiologieStructurale (IPBS)Centre National de la Recherche Scientifique (CNRS)ToulouseFrance
  2. 2.Université de Toulouse, Université Paul Sabatier (Toulouse III)ToulouseFrance

Personalised recommendations