Whole-Transcriptome Sequencing for High-Resolution Transcriptomic Analysis in Mycobacterium tuberculosis

  • Andrej Benjak
  • Claudia Sala
  • Ruben C. HartkoornEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1285)


RNA-seq uses next-generation sequencing technology to determine the transcription profile of an organism in a quantitative manner. With respect to microarrays, this methodology allows greater resolution, increased dynamic range, and identification of new features such as previously unannotated genes and noncoding RNAs. Here we describe how to extract RNA from mycobacterial cultures, how to prepare libraries for Illumina sequencing, and the bioinformatics analysis of the sequencing data to determine the transcription profile.

Key words

Illumina RNA-seq Transcriptome RNA extraction Library preparation 


  1. 1.
    Wolf JBW (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13:559–572. doi: 10.1111/1755-0998.12109 CrossRefPubMedGoogle Scholar
  2. 2.
    Auer PL, Doerge RW (2010) Statistical design and analysis of RNA sequencing data. Genetics 185:405–416. doi: 10.1534/genetics.110.114983 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rapaport F, Khanin R, Liang Y et al (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:R95. doi: 10.1186/gb-2013-14-9-r95 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am J Bot 99:248–256. doi: 10.3732/ajb.1100340 CrossRefPubMedGoogle Scholar
  5. 5.
    Haas BJ, Chin M, Nusbaum C et al (2012) How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? BMC Genomics 13:734. doi: 10.1186/1471-2164-13-734 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi: 10.1038/nmeth.1923 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liao Y, Smyth GK, Shi W (2013) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–30. doi: 10.1093/bioinformatics/btt656 CrossRefPubMedGoogle Scholar
  9. 9.
    Ahn SJ, Costa J, Emanuel JR (1996) PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR. Nucleic Acids Res 24(13):2623–2625CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    McClure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41:e140. doi: 10.1093/nar/gkt444 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hatem A, Bozdağ D, Toland AE, Çatalyürek ÜV (2013) Benchmarking short sequence mapping tools. BMC Bioinformatics 14:184. doi: 10.1186/1471-2105-14-184 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi: 10.1093/bioinformatics/btq033 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Andrej Benjak
    • 1
  • Claudia Sala
    • 1
  • Ruben C. Hartkoorn
    • 1
    Email author
  1. 1.Global Health InstituteÉcole polytechnique fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations