Advertisement

A Multi-stress Model for High Throughput Screening Against Non-replicating Mycobacterium tuberculosis

  • Ben GoldEmail author
  • Thulasi Warrier
  • Carl Nathan
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1285)

Abstract

Models of non-replication help us understand the biology of persistent Mycobacterium tuberculosis. High throughput screening (HTS) against non-replicating M. tuberculosis may lead to identification of tool compounds that affect pathways on which bacterial survival depends in such states, and to development of drugs that can overcome phenotypic tolerance to conventional antimycobacterial agents, which are mostly active against replicating M. tuberculosis. We describe a multi-stress model of non-replication that mimics some of the microenvironmental conditions that M. tuberculosis faces in the host as adapted for HTS. The model includes acidic pH, mild hypoxia, a flux of nitric oxide and other reactive nitrogen intermediates arising from nitrite at low pH, and low concentrations of a fatty acid (butyrate) as a carbon source.

Key words

Mycobacterium tuberculosis Non-replication Hypoxia Acidic pH Fatty acids Nitric oxide Reactive nitrogen species Phenotypic tolerance Antibiotics High-throughput screening 

Notes

Acknowledgements

We are very grateful for the numerous contributions towards the development of the non-replicating assay and critical reading of this chapter: Julia Roberts, Yan Ling, Selin Somersan-Karakaya, Landys Lopez-Quezada, David Little, Maneesh Pingle, Kristin Burns-Huang, and Alfonso Mendoza-Losana, Maria Martinez-Hoyos, and Manuel Marin-Amieva at GSK in Tres Cantos, Spain. This work was supported by the TB Drug Accelerator Program of the Bill and Melinda Gates Foundation and by the Abby and Howard P. Milstein Program in Translational Medicine. The Department of Microbiology and Immunology is supported by the William Randolph Hearst Foundation.

References

  1. 1.
    Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4(140):140sr142. doi: 10.1126/scitranslmed.3003081 CrossRefGoogle Scholar
  2. 2.
    Bryk R, Gold B, Venugopal A, Singh J, Samy R, Pupek K, Cao H, Popescu C, Gurney M, Hotha S, Cherian J, Rhee K, Ly L, Converse PJ, Ehrt S, Vandal O, Jiang X, Schneider J, Lin G, Nathan C (2008) Selective killing of nonreplicating mycobacteria. Cell Host Microbe 3(3):137–145. doi: 10.1016/j.chom.2008.02.003 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lin G, Li D, de Carvalho LP, Deng H, Tao H, Vogt G, Wu K, Schneider J, Chidawanyika T, Warren JD, Li H, Nathan C (2009) Inhibitors selective for mycobacterial versus human proteasomes. Nature 461(7264):621–626, doi:nature08357[pii]10.1038/nature08357CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lin G, Chidawanyika T, Tsu C, Warrier T, Vaubourgeix J, Blackburn C, Gigstad K, Sintchak M, Dick L, Nathan C (2013) N, C-capped dipeptides with selectivity for mycobacterial proteasome over human proteasomes: role of S3 and S1 binding pockets. J Am Chem Soc 135(27):9968–9971. doi: 10.1021/ja400021x CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nathan C, Gold B, Lin G, Stegman M, de Carvalho LP, Vandal O, Venugopal A, Bryk R (2008) A philosophy of anti-infectives as a guide in the search for new drugs for tuberculosis. Tuberculosis 88(Suppl 1):25–33, doi:S1472-9792(08)70034-9[pii]10.1016/S1472-9792(08)70034-9CrossRefGoogle Scholar
  6. 6.
    Loebel RO, Shorr E, Richardson HB (1933) The influence of foodstuffs upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26(2):139–166PubMedPubMedCentralGoogle Scholar
  7. 7.
    Loebel RO, Shorr E, Richardson HB (1933) The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. J Bacteriol 26(2):167–200PubMedPubMedCentralGoogle Scholar
  8. 8.
    Nyka W (1974) Studies on the effect of starvation on mycobacteria. Infect Immun 9(5):843–850PubMedPubMedCentralGoogle Scholar
  9. 9.
    Gengenbacher M, Rao SP, Pethe K, Dick T (2010) Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156(Pt 1):81–87. doi: 10.1099/mic. 0.033084-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731CrossRefPubMedGoogle Scholar
  11. 11.
    Xie Z, Siddiqi N, Rubin EJ (2005) Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49(11):4778–4780. doi: 10.1128/AAC. 49.11.4778-4780.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Wayne LG, Sramek HA (1994) Metronidazole is bactericidal to dormant cells of Mycobacterium tuberculosis. Antimicrob Agents Chemother 38(9):2054–2058CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wayne LG (1994) Dormancy of Mycobacterium tuberculosis and latency of disease. Eur J Clin Microbiol Infect Dis 13(11):908–914CrossRefPubMedGoogle Scholar
  14. 14.
    Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS (2009) Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science 323(5918):1215–1218. doi: 10.1126/science.1167498 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE 3rd (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76(6):2333–2340. doi: 10.1128/IAI. 01515-07 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Brooks JV, Furney SK, Orme IM (1999) Metronidazole therapy in mice infected with tuberculosis. Antimicrob Agents Chemother 43(5):1285–1288PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lin PL, Dartois V, Johnston PJ, Janssen C, Via L, Goodwin MB, Klein E, Barry CE 3rd, Flynn JL (2012) Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc Natl Acad Sci U S A 109(35):14188–14193. doi: 10.1073/pnas.1121497109 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hoff DR, Caraway ML, Brooks EJ, Driver ER, Ryan GJ, Peloquin CA, Orme IM, Basaraba RJ, Lenaerts AJ (2008) Metronidazole lacks antibacterial activity in guinea pigs infected with Mycobacterium tuberculosis. Antimicrob Agents Chemother 52(11):4137–4140. doi: 10.1128/AAC. 00196-08 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, Lee M, Lee J, Via LE, Lee S, Eum SY, Lee SJ, Goldfeder LC, Cai Y, Jin B, Kim Y, Oh T, Chen RY, Dodd LE, Gu W, Dartois V, Park SK, Kim CT, Barry CE 3rd, Cho SN (2013) Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother 57(8):3903–3909. doi: 10.1128/AAC. 00753-13 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Coates A, Hu Y, Bax R, Page C (2002) The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov 1(11):895–910. doi: 10.1038/nrd940 CrossRefPubMedGoogle Scholar
  22. 22.
    Rao SP, Alonso S, Rand L, Dick T, Pethe K (2008) The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 105(33):11945–11950. doi: 10.1073/pnas.0711697105 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mak PA, Rao SP, Ping Tan M, Lin X, Chyba J, Tay J, Ng SH, Tan BH, Cherian J, Duraiswamy J, Bifani P, Lim V, Lee BH, Ling Ma N, Beer D, Thayalan P, Kuhen K, Chatterjee A, Supek F, Glynne R, Zheng J, Boshoff HI, Barry CE 3rd, Dick T, Pethe K, Camacho LR (2012) A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem Biol 7(7):1190–1197. doi: 10.1021/cb2004884 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51(4):1380–1385, doi:AAC.00055-06 [pii] 10.1128/AAC.00055-06CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    MacMicking JD, Taylor GA, McKinney JD (2003) Immune control of tuberculosis by IFN-gamma-inducible LRG-47. Science 302(5645):654–659CrossRefPubMedGoogle Scholar
  26. 26.
    MacMicking JD, North RJ, LaCourse R, Mudgett JS, Shah SK, Nathan CF (1997) Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A 94(10):5243–5248CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cunningham-Bussel A, Zhang T, Nathan CF (2013) Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression. Proc Natl Acad Sci U S A 110(45):E4256–E4265. doi: 10.1073/pnas.1316894110 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Aly S, Wagner K, Keller C, Malm S, Malzan A, Brandau S, Bange FC, Ehlers S (2006) Oxygen status of lung granulomas in Mycobacterium tuberculosis-infected mice. J Pathol 210(3):298–305. doi: 10.1002/path.2055 CrossRefPubMedGoogle Scholar
  29. 29.
    Marrero J, Rhee KY, Schnappinger D, Pethe K, Ehrt S (2010) Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. Proc Natl Acad Sci U S A 107(21):9819–9824. doi: 10.1073/pnas.1000715107 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Munoz-Elias EJ, McKinney JD (2005) Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11(6):638–644, doi:nm1252 [pii]. 10.1038/nm1252CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Timm J, Post FA, Bekker LG, Walther GB, Wainwright HC, Manganelli R, Chan WT, Tsenova L, Gold B, Smith I, Kaplan G, McKinney JD (2003) Differential expression of iron-, carbon-, and oxygen-responsive mycobacterial genes in the lungs of chronically infected mice and tuberculosis patients. Proc Natl Acad Sci U S A 100(24):14321–14326. doi: 10.1073/pnas.2436197100 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, An essential gene in Mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70(7):3371–3381CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gold B, Rodriguez GM, Marras SA, Pentecost M, Smith I (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42(3):851–865CrossRefPubMedGoogle Scholar
  34. 34.
    Walters SB, Dubnau E, Kolesnikova I, Laval F, Daffe M, Smith I (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Micobiol 60(2):312–330. doi: 10.1111/j.1365-2958.2006.05102.x CrossRefGoogle Scholar
  35. 35.
    Hondalus MK, Bardarov S, Russell R, Chan J, Jacobs WR Jr, Bloom BR (2000) Attenuation of and protection induced by a leucine auxotroph of Mycobacterium tuberculosis. Infect Immun 68(5):2888–2898CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr (2002) A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med 8(10):1171–1174. doi: 10.1038/nm765 CrossRefPubMedGoogle Scholar
  37. 37.
    Gold B, Deng H, Bryk R, Vargas D, Eliezer D, Roberts J, Jiang X, Nathan C (2008) Identification of a copper-binding metallothionein in pathogenic mycobacteria. Nat Chem Biol 4(10):609–616, doi:nchembio.109 [pii]. 10.1038/nchembio.109CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Shi X, Festa RA, Ioerger TR, Butler-Wu S, Sacchettini JC, Darwin KH, Samanovic MI (2014) The copper-responsive RicR regulon contributes to Mycobacterium tuberculosis virulence. mBio 5(1):e00876-13. doi: 10.1128/mBio. 00876-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Ng VH, Cox JS, Sousa AO, MacMicking JD, McKinney JD (2004) Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol Microbiol 52(5):1291–1302CrossRefPubMedGoogle Scholar
  40. 40.
    Shiloh MU, Manzanillo P, Cox JS (2008) Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 3(5):323–330. doi: 10.1016/j.chom.2008.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Gold B, Pingle M, Brickner SJ, Shah N, Roberts J, Rundell M, Bracken WC, Warrier T, Somersan S, Venugopal A, Darby C, Jiang X, Warren JD, Fernandez J, Ouerfelli O, Nuermberger EL, Cunningham-Bussel A, Rath P, Chidawanyika T, Deng H, Realubit R, Glickman JF, Nathan CF (2012) Nonsteroidal anti-inflammatory drug sensitizes Mycobacterium tuberculosis to endogenous and exogenous antimicrobials. Proc Natl Acad Sci U S A 109(40):16004–16011. doi: 10.1073/pnas.1214188109 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C, Schoolnik GK (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J Exp Med 198(5):693–704. doi: 10.1084/jem.20030846 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zheng P, Somersan-Karakaya S, Lu S, Roberts J, Pingle M, Warrier T, Little D, Guo X, Brickner SJ, Nathan CF, Gold B, Liu G (2014) Synthetic calanolides with bactericidal activity against replicating and nonreplicating Mycobacterium tuberculosis. J Med Chem. doi: 10.1021/jm4019228 Google Scholar
  44. 44.
    Scanga CA, Mohan VP, Joseph H, Yu K, Chan J, Flynn JL (1999) Reactivation of latent tuberculosis: variations on the Cornell murine model. Infect Immun 67(9):4531–4538PubMedPubMedCentralGoogle Scholar
  45. 45.
    McCune RM, Feldmann FM, Lambert HP, McDermott W (1966) Microbial persistence. I. The capacity of tubercle bacilli to survive sterilization in mouse tissues. J Exp Med 123(3):445–468CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    McCune RM, Feldmann FM, McDermott W (1966) Microbial persistence. II. Characteristics of the sterile state of tubercle bacilli. J Exp Med 123(3):469–486CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUSA
  2. 2.Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUSA
  3. 3.Department of Microbiology and ImmunologyWeill Cornell Medical CollegeNew YorkUSA

Personalised recommendations