Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis

  • Sanghyun Cho
  • Hyung Sup Lee
  • Scott FranzblauEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1285)


Throughput in tuberculosis drug discovery was extremely limited prior to the introduction of microplate-based susceptibility assays. The 96-well Microplate Alamar Blue Assay (MABA) allows for the quantitative determination of drug susceptibility against any strain of replicating Mycobacterium tuberculosis to be completed within a week at minimal cost. The Low-Oxygen Recovery Assay (LORA) uses a recombinant M. tuberculosis expressing luciferase and provides results of drug activity against non-replicating M. tuberculosis surviving under hypoxic conditions. Determining activity against non-replicating M. tuberculosis is an important factor when developing drug candidates against M. tuberculosis. Here we describe a step-by-step procedure for both the MABA and LORA.

Key words

Antimicrobial activity Growth Aerobic Hypoxia Minimum inhibitory concentration Metabolic activity Luminescent reporter 


  1. 1.
    Glaziou P, Falzon D, Floyd K, Raviglione M (2013) Global epidemiology of tuberculosis. Semin Respir Crit Care Med 34(1):3–16CrossRefPubMedGoogle Scholar
  2. 2.
    Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M, Mahler HT, Meissner G, Mitchison DA, Sula L (1963) Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ 29:565–578PubMedPubMedCentralGoogle Scholar
  3. 3.
    Canetti G (1970) Infection caused by atypical mycobacteria and antituberculous immunity. Lille Med 15(2):280–282PubMedGoogle Scholar
  4. 4.
    Cho SH, Goodlett D, Franzblau S (2006) ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis (Edinb) 86(6):445–460CrossRefGoogle Scholar
  5. 5.
    Walters SB, Hanna BA (1996) Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol 34(6):1565–1567PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wanger A, Mills K (1996) Testing of Mycobacterium tuberculosis susceptibility to ethambutol, isoniazid, rifampin, and streptomycin by using Etest. J Clin Microbiol 34(7):1672–1676PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakayama GR, Caton MC, Nova MP, Parandoosh Z (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204(2):205–208CrossRefPubMedGoogle Scholar
  8. 8.
    Collins L, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009PubMedPubMedCentralGoogle Scholar
  9. 9.
    Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36(2):362–366PubMedPubMedCentralGoogle Scholar
  10. 10.
    Yajko DM, Madej JJ, Lancaster MV, Sanders CA, Cawthon VL, Gee B, Babst A, Hadley WK (1995) Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol 33(9):2324–2327PubMedPubMedCentralGoogle Scholar
  11. 11.
    Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F (2002) Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46(8):2720–2722CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Zhang Y, Yew WW, Barer MR (2012) Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 56(5):2223–2230, AAC.06288-11 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boshoff HI, Barry CE 3rd (2005) Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80CrossRefPubMedGoogle Scholar
  14. 14.
    Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731CrossRefPubMedGoogle Scholar
  15. 15.
    Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069PubMedPubMedCentralGoogle Scholar
  16. 16.
    Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4(6):e6077CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51(4):1380–1385CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heifets L, Simon J, Pham V (2005) Capreomycin is active against non-replicating M. tuberculosis. Ann Clin Microbiol Antimicrob 4:6. doi: 10.1186/1476-0711-4-6 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xie Z, Siddiqi N, Rubin EJ (2005) Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49(11):4778–4780CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cooksey RC, Crawford JT, Jacobs WR Jr, Shinnick TM (1993) A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother 37(6):1348–1352CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lambrecht RS, Carriere JF, Collins MT (1988) A model for analyzing growth kinetics of a slowly growing Mycobacterium sp. Appl Environ Microbiol 54(4):910–916PubMedPubMedCentralGoogle Scholar
  22. 22.
    Shin SJ, Han JH, Manning EJ, Collins MT (2007) Rapid and reliable method for quantification of Mycobacterium paratuberculosis by use of the BACTEC MGIT 960 system. J Clin Microbiol 45(6):1941–1948CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Youmans AS, Youmans GP (1948) The effect of “Tween 80” in vitro on the bacteriostatic activity of twenty compounds for Mycobacterium tuberculosis. J Bacteriol 56(2):245–252PubMedCentralGoogle Scholar
  24. 24.
    Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ (2012) Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis 92(6):453–488CrossRefPubMedGoogle Scholar
  25. 25.
    Wayne LG, Lin KY (1982) Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37(3):1042–1049PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute for Tuberculosis Research, College of PharmacyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations