Skip to main content

Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis

  • Protocol
  • First Online:
Mycobacteria Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1285))

Abstract

Throughput in tuberculosis drug discovery was extremely limited prior to the introduction of microplate-based susceptibility assays. The 96-well Microplate Alamar Blue Assay (MABA) allows for the quantitative determination of drug susceptibility against any strain of replicating Mycobacterium tuberculosis to be completed within a week at minimal cost. The Low-Oxygen Recovery Assay (LORA) uses a recombinant M. tuberculosis expressing luciferase and provides results of drug activity against non-replicating M. tuberculosis surviving under hypoxic conditions. Determining activity against non-replicating M. tuberculosis is an important factor when developing drug candidates against M. tuberculosis. Here we describe a step-by-step procedure for both the MABA and LORA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glaziou P, Falzon D, Floyd K, Raviglione M (2013) Global epidemiology of tuberculosis. Semin Respir Crit Care Med 34(1):3–16

    Article  PubMed  Google Scholar 

  2. Canetti G, Froman S, Grosset J, Hauduroy P, Langerova M, Mahler HT, Meissner G, Mitchison DA, Sula L (1963) Mycobacteria: laboratory methods for testing drug sensitivity and resistance. Bull World Health Organ 29:565–578

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Canetti G (1970) Infection caused by atypical mycobacteria and antituberculous immunity. Lille Med 15(2):280–282

    CAS  PubMed  Google Scholar 

  4. Cho SH, Goodlett D, Franzblau S (2006) ICAT-based comparative proteomic analysis of non-replicating persistent Mycobacterium tuberculosis. Tuberculosis (Edinb) 86(6):445–460

    Article  CAS  Google Scholar 

  5. Walters SB, Hanna BA (1996) Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol 34(6):1565–1567

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wanger A, Mills K (1996) Testing of Mycobacterium tuberculosis susceptibility to ethambutol, isoniazid, rifampin, and streptomycin by using Etest. J Clin Microbiol 34(7):1672–1676

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nakayama GR, Caton MC, Nova MP, Parandoosh Z (1997) Assessment of the Alamar Blue assay for cellular growth and viability in vitro. J Immunol Methods 204(2):205–208

    Article  CAS  PubMed  Google Scholar 

  8. Collins L, Franzblau SG (1997) Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41(5):1004–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH (1998) Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 36(2):362–366

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yajko DM, Madej JJ, Lancaster MV, Sanders CA, Cawthon VL, Gee B, Babst A, Hadley WK (1995) Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol 33(9):2324–2327

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F (2002) Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 46(8):2720–2722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Yew WW, Barer MR (2012) Targeting persisters for tuberculosis control. Antimicrob Agents Chemother 56(5):2223–2230, AAC.06288-11 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Boshoff HI, Barry CE 3rd (2005) Tuberculosis – metabolism and respiration in the absence of growth. Nat Rev Microbiol 3(1):70–80

    Article  CAS  PubMed  Google Scholar 

  14. Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002) Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol 43(3):717–731

    Article  CAS  PubMed  Google Scholar 

  15. Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64(6):2062–2069

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE (2009) A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 4(6):e6077

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cho SH, Warit S, Wan B, Hwang CH, Pauli GF, Franzblau SG (2007) Low-oxygen-recovery assay for high-throughput screening of compounds against nonreplicating Mycobacterium tuberculosis. Antimicrob Agents Chemother 51(4):1380–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heifets L, Simon J, Pham V (2005) Capreomycin is active against non-replicating M. tuberculosis. Ann Clin Microbiol Antimicrob 4:6. doi:10.1186/1476-0711-4-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Xie Z, Siddiqi N, Rubin EJ (2005) Differential antibiotic susceptibilities of starved Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 49(11):4778–4780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cooksey RC, Crawford JT, Jacobs WR Jr, Shinnick TM (1993) A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother 37(6):1348–1352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lambrecht RS, Carriere JF, Collins MT (1988) A model for analyzing growth kinetics of a slowly growing Mycobacterium sp. Appl Environ Microbiol 54(4):910–916

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin SJ, Han JH, Manning EJ, Collins MT (2007) Rapid and reliable method for quantification of Mycobacterium paratuberculosis by use of the BACTEC MGIT 960 system. J Clin Microbiol 45(6):1941–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Youmans AS, Youmans GP (1948) The effect of “Tween 80” in vitro on the bacteriostatic activity of twenty compounds for Mycobacterium tuberculosis. J Bacteriol 56(2):245–252

    CAS  PubMed Central  Google Scholar 

  24. Franzblau SG, DeGroote MA, Cho SH, Andries K, Nuermberger E, Orme IM, Mdluli K, Angulo-Barturen I, Dick T, Dartois V, Lenaerts AJ (2012) Comprehensive analysis of methods used for the evaluation of compounds against Mycobacterium tuberculosis. Tuberculosis 92(6):453–488

    Article  CAS  PubMed  Google Scholar 

  25. Wayne LG, Lin KY (1982) Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun 37(3):1042–1049

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Franzblau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Cho, S., Lee, H.S., Franzblau, S. (2015). Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA) for Mycobacterium tuberculosis . In: Parish, T., Roberts, D. (eds) Mycobacteria Protocols. Methods in Molecular Biology, vol 1285. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2450-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2450-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2449-3

  • Online ISBN: 978-1-4939-2450-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics