Advertisement

In Vitro Models That Utilize Hypoxia to Induce Non-replicating Persistence in Mycobacteria

  • Charles D. SohaskeyEmail author
  • Martin I. Voskuil
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1285)

Abstract

The Wayne model and Rapid Anaerobic Dormancy model are widely used methods to analyze the response of Mycobacterium tuberculosis to hypoxia and anaerobiosis. In these models tubercle bacilli are grown in sealed tubes in which bacilli aerobic respiration produces a temporal oxygen gradient. The gradual depletion of oxygen results in a non-replicating persistent culture capable of extended microaerobic and anaerobic survival. Here we describe both models used to induce hypoxic non-replicating persistence in M. tuberculosis. Additional techniques such as the isolation of RNA, the detection of nitrate reductase activity and ATP levels, and the determination of the NAD+/NADH ratio are described.

Key words

Mycobacterium tuberculosis Tuberculosis Latent infection Hypoxia Persistence Dormancy 

References

  1. 1.
    Wayne LG, Sohaskey CD (2001) Non-replicating persistence of Mycobacterium tuberculosis. Annu Rev Microbiol 55:139–163CrossRefPubMedGoogle Scholar
  2. 2.
    Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CEI (2008) Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76:2332–2340CrossRefGoogle Scholar
  3. 3.
    Wayne LG, Hayes LG (1996) An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of non-replicating persistence. Infect Immun 64:2062–2069PubMedPubMedCentralGoogle Scholar
  4. 4.
    Watanabe S, Zimmermann M, Goodwin MB, Sauer U, Barry CEI, Boshoff HI (2011) Fumarate reductase activity maintains an energized membrane in anaerobic Mycobacterium tuberculosis. PLoS Pathog 7:1–15Google Scholar
  5. 5.
    Voskuil MI, Schnappinger D, Harrell MI, Visconti KC, Dolganov GM, Sherman DR, Schoolnik GK (2003) Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis persistence program. J Exp Med 198:705–713CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sohaskey CD, Wayne LG (2003) Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185:7247–7256CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wayne LG, Hayes LG (1999) Nitrate reduction as a marker for hypoxic shiftdown of Mycobacterium tuberculosis. Tuber Lung Dis 79:127–132CrossRefGoogle Scholar
  8. 8.
    Leistikow RL, Morton RA, Bartek IL, Frimpong I, Wagner K, Voskuil MI (2010) The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol 192:1662–1670CrossRefPubMedGoogle Scholar
  9. 9.
    Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CEI (2004) The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism. J Biol Chem 279:40174–40184CrossRefPubMedGoogle Scholar
  10. 10.
    Wayne LG (1977) Synchronized replication of Mycobacterium tuberculosis. Infect Immun 17:528–530PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bartek IL, Woolhiser LK, Baughn AD, Basaraba RJ, Jacobs WRJ, Lenaerts AJ, Voskuil MI (2014) Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. MBio 5:e01106–e01114CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shi L, Sohaskey CD, Pfeiffer C, Parks M, McFadden J, North RJ, Gennaro ML (2010) Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Mol Microbiol 78:1199–1215CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sohaskey CD, Modesti L (2009) Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2. FEMS Microbiol Lett 290:129–134CrossRefPubMedGoogle Scholar
  14. 14.
    Honaker RW, Stewart A, Schittone S, Izzo A, Klein MR, Voskuil MI (2008) BCG vaccine strains lack narK2 and narX induction and exhibit altered phenotypes during dormancy. Infect Immun 76:2587–2593CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lim A, Eleuterio M, Hutter B, Murugasu-Oei B, Dick T (1999) Oxygen depletion induced dormancy in Mycobacterium bovis BCG. J Bacteriol 181:2252–2256PubMedPubMedCentralGoogle Scholar
  16. 16.
    Dick T, Lee BH, Murugasu-Oei B (1998) Oxygen depletion induced dormancy in Mycobacterium smegmatis. FEMS Microbiol Lett 163:159–164CrossRefPubMedGoogle Scholar
  17. 17.
    London J, Knight M (1966) Concentrations of nicotinamide nucleotide coenzymes in micro-organisms. J Gen Microbiol 44:254CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Veterans Affairs Medical CenterLong BeachUSA
  2. 2.Department of MicrobiologyUniversity of Colorado Denver School of MedicineAuroraUSA

Personalised recommendations