Advertisement

The Strep-tag System for One-Step Affinity Purification of Proteins from Mammalian Cell Culture

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1286)

Abstract

The Strep-tag—or its improved version Strep-tagII—is an eight amino acid sequence that can be easily fused or conjugated to any protein or peptide of interest and that was engineered for high affinity toward streptavidin, which otherwise is widely known as a tight biotin-binding reagent. Especially in combination with immobilized Strep-Tactin, a mutant streptavidin specifically optimized toward the Strep-tagII, this system enables the facile one-step affinity purification of various biomolecules, including oligomeric and even membrane proteins. The Strep-tagII/Strep-Tactin interaction shows exquisite specificity, thus allowing efficient separation from host cell proteins, and it can be reversed simply by addition of biotin (or a suitable derivative thereof, such as desthiobiotin). Therefore, this system has become very popular for the highly efficient affinity chromatography under biochemically mild conditions. Here, we describe the purification of Strep-tagged proteins from mammalian cell lysates and cell culture supernatants.

Key words

Magnetic beads Mammalian cell culture Peptide tag Protein isolation Recombinant protein expression Strep-Tactin Strep-tag 

References

  1. 1.
    Schmidt TGM, Skerra A (1993) The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng 6:109–122CrossRefPubMedGoogle Scholar
  2. 2.
    Schmidt TGM, Koepke J, Frank R, Skerra A (1996) Molecular interaction between the Strep-tag affinity peptide and its cognate target streptavidin. J Mol Biol 255:753–766CrossRefPubMedGoogle Scholar
  3. 3.
    Voss S, Skerra A (1997) Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng 10:975–982CrossRefPubMedGoogle Scholar
  4. 4.
    Korndörfer IP, Skerra A (2002) Improved affinity of engineered streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site. Protein Sci 11:883–893CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Schmidt TGM, Skerra A (2007) The Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nat Protoc 2:1528–1535CrossRefPubMedGoogle Scholar
  6. 6.
    Skerra A, Schmidt TGM (2000) Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. Methods Enzymol 326A:271–304CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Ostermeier C, Iwata S, Ludwig B, Michel H (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 2:842–846CrossRefPubMedGoogle Scholar
  9. 9.
    Ostermeier C, Harrenga A, Ermler U, Michel H (1997) Structure at 2.7 Å resolution of the Paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody Fv fragment. Proc Natl Acad Sci USA 94:10547–10553CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Schaffitzel C, Ban N (2007) Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 158:463–471CrossRefPubMedGoogle Scholar
  11. 11.
    Groth A, Corpet A, Cook AJL, Roche D, Bartek J, Lukas J, Almouzni G (2007) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931CrossRefPubMedGoogle Scholar
  12. 12.
    Johansen LD, Naumanen T, Knudsen A, Westerlund N, Gromova I, Junttila M, Nielsen C, Bøttzauw T, Tolkovsky A, Westermarck J, Coffey ET, Jäättelä M, Kallunki T (2008) IKAP localizes to membrane ruffles with filamin A and regulates actin cytoskeleton organization and cell migration. J Cell Sci 121:854–864CrossRefPubMedGoogle Scholar
  13. 13.
    Weber M, Wehling M, Lösel R (2008) Proteins interact with the cytosolic mineralocorticoid receptor depending on the ligand. Am J Physiol Heart Circ Physiol 295:361–365CrossRefGoogle Scholar
  14. 14.
    Gianni T, Amasio M, Campadelli-Fiume G (2009) Herpes simplex virus gD forms distinct complexes with fusion executors gB and gH/gL through the C-terminal profusion domain. J Biol Chem 284:17370–17382CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Neumann K, Oellerich T, Urlaub H, Wienands J (2009) The B lymphocyte Grb2 interaction code. Immunol Rev 232:135–149CrossRefPubMedGoogle Scholar
  16. 16.
    Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11:1261–1267CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Bekker-Jensen S, Rendtlew Danielsen J, Fugger K, Gromova I, Nerstedt A, Bartek J, Lukas J, Mailand N (2010) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12:80–86CrossRefPubMedGoogle Scholar
  18. 18.
    Jasencakova Z, Scharf AND, Ask K, Corpet A, Imhof A, Almouzni G, Groth A (2010) Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37:736–743CrossRefPubMedGoogle Scholar
  19. 19.
    Kubben N, Voncken JW, Demmers J, Calis C, van Almen G, Pint Y, Misteli T (2010) Identification of differential protein interactors of lamin A and progerin. Nucleus 1:513–525CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Varjosalo M, Sacco R, Stukalov A, van Drogen A, Planyavsky M, Hauri S, Aebersold R, Bennett KL, Colinge J, Gstaiger M, Superti-Furga G (2013) Interlaboratory reproducibility of large-scale human protein-complex analysis by standardized AP-MS. Nat Methods 10:307–314CrossRefPubMedGoogle Scholar
  21. 21.
    Junttila MR, Saarinen S, Schmidt T, Kast J, Westermarck J (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5:1199–1203CrossRefPubMedGoogle Scholar
  22. 22.
    Jarchow S, Lück C, Görg A, Skerra A (2008) Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp. Proteomics 8:4987–4994CrossRefPubMedGoogle Scholar
  23. 23.
    Schmidt TGM, Batz L, Bonet L, Carl U, Holzapfel G, Kiem K, Matulewicz K, Niermeier D, Schuchardt I, Stanar K (2013) Development of the Twin-Strep-tag and its application for purification of recombinant proteins from cell culture supernatants. Protein Expr Purif 92:54–61CrossRefPubMedGoogle Scholar
  24. 24.
    Schmidt TGM, Skerra A (1994) One-step affinity purification of bacterially produced proteins by means of the “Strep tag” and immobilized recombinant core streptavidin. J Chromatogr A 676:337–345CrossRefPubMedGoogle Scholar
  25. 25.
    Skerra A, Schmidt TGM (1999) Applications of a peptide ligand for streptavidin: the Strep-tag. Biomol Eng 16:79–86CrossRefPubMedGoogle Scholar
  26. 26.
    Hacker DL, Kiseljak D, Rajendra Y, Thurnheer S, Baldi L, Wurm FM (2013) Polyethyleneimine-based transient gene expression processes for suspension-adapted HEK-293E and CHO-DG44 cells. Protein Expr Purif 92:67–76CrossRefPubMedGoogle Scholar
  27. 27.
    Geisse S, Voedisch B (2012) Transient expression technologies: past, present, and future. Methods Mol Biol 899:203–219CrossRefPubMedGoogle Scholar
  28. 28.
    Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into mammalian cells. Methods Enzymol 463:223–238CrossRefPubMedGoogle Scholar
  29. 29.
    Geisse S (2009) Reflections on more than 10 years of TGE approaches. Protein Expr Purif 64:99–107CrossRefPubMedGoogle Scholar
  30. 30.
    Pham PL, Kamen A, Durocher Y (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol Biotechnol 34:225–237CrossRefPubMedGoogle Scholar
  31. 31.
    Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398CrossRefPubMedGoogle Scholar
  32. 32.
    See “Reagents compatible with Strep-tag/Strep-Tactin interaction” in the FAQ section. Available at http://www.iba-lifesciences.com/technical-support.html
  33. 33.
    Weber PC, Wendoloski JJ, Pantoliano MW, Salemme FR (1992) Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin. J Am Chem Soc 114:3197–3200CrossRefGoogle Scholar
  34. 34.
    See “Biotin blocking” in the FAQ section. Available at http://www.iba-lifesciences.com/technical-support.html

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.IBA GmbHGöttingenGermany
  2. 2.Lehrstuhl für Biologische ChemieTechnische Universität München, Lehrstuhl für Biologische ChemieFreising-WeihenstephanGermany

Personalised recommendations