Analysis of Drug–Protein Interactions by High-Performance Affinity Chromatography: Interactions of Sulfonylurea Drugs with Normal and Glycated Human Serum Albumin

  • Ryan Matsuda
  • Jeanethe Anguizola
  • Krina S. Hoy
  • David S. Hage
Part of the Methods in Molecular Biology book series (MIMB, volume 1286)


High-performance affinity chromatography (HPAC) is a type of liquid chromatography that has seen growing use as a tool for the study of drug–protein interactions. This report describes how HPAC can be used to provide information on the number of binding sites, equilibrium constants, and changes in binding that can occur during drug–protein interactions. This approach will be illustrated through recent data that have been obtained by HPAC for the binding of sulfonylurea drugs and other solutes to the protein human serum albumin (HSA), and especially to forms of this protein that have been modified by non-enzymatic glycation. The theory and use of both frontal analysis and zonal elution competition studies in such work will be discussed. Various practical aspects of these experiments will be presented, as well as factors to consider in the extension of these methods to other drugs and proteins or additional types of biological interactions.

Key words

Drug–protein binding High-performance affinity chromatography Biointeraction analysis Frontal analysis Zonal elution Sulfonylurea drugs Human serum albumin Glycation 



This work was supported, in part, by the National Institutes of Health under grants R01 DK069629 and R01 GM044931. Additional support for R. Matsuda was obtained through a fellowship from the Molecular Mechanisms of Disease Program at the University of Nebraska-Lincoln.


  1. 1.
    Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B 768:3–30CrossRefGoogle Scholar
  2. 2.
    Zheng X, Li Z, Beeram S, Padariu M, Matsuda R, Pfaunmiller EL, White CJ II, Carter N, Hage DS (2014) Analysis of biomolecular interactions using affinity microcolumns: a review. J Chromatogr B Analyt Technol Biomed Life Sci 968:49–63. doi: 10.1016/j.jchromb.2014.01.026 CrossRefPubMedGoogle Scholar
  3. 3.
    Nakajou K, Watanabe H, Kragh-Hansen U, Maruyama T, Otagiri M (2003) The effect of glycation on the structure, function and biological fate of human serum albumin as revealed by recombinant mutants. Biochim Biophys Acta 1623:88–97CrossRefPubMedGoogle Scholar
  4. 4.
    Barzegar A, Moosavi-Movahedi AA, Sattarahmady N, Hosseinpour-Faizi MA, Aminbakhsh M, Ahmad F, Saboury AA, Ganjali MR, Norouzi P (2007) Spectroscopic studies of the effects of glycation of human serum albumin on L-trp binding. Protein Pept Lett 14:13–18CrossRefPubMedGoogle Scholar
  5. 5.
    Okabe N, Hashizume N (1994) Drug binding properties of glycosylated human serum albumin as measured by fluorescence and circular dichroism. Biol Pharm Bull 17:16–21CrossRefPubMedGoogle Scholar
  6. 6.
    Baraka-Vidot J, Guerin-Dubourg A, Bourdon E, Rondeau P (2012) Impaired drug-binding capacities of in vitro and in vivo glycated albumin. Biochimie 94:1960–1967CrossRefPubMedGoogle Scholar
  7. 7.
    Syrovy I (1994) Glycation of albumin: reaction with glucose, fructose, galactose, ribose or glyceraldehydes measured using four methods. J Biochem Biophys Methods 28:115–121CrossRefPubMedGoogle Scholar
  8. 8.
    Koizumi K, Ikeda C, Ito M, Suzuki J, Kinoshita T, Yasukawa K, Hanai T (1998) Influence of glycosylation on the drug binding of human serum albumin. Biomed Chromatogr 12:203–210CrossRefPubMedGoogle Scholar
  9. 9.
    Fitzpatrick G, Duggan PF (1987) The effect of non-enzymatic glycation on ligand binding to human serum albumin. Biochem Soc Trans 15:267–268Google Scholar
  10. 10.
    McNamara PJ, Blouin RA, Brazzell RK (1988) The protein binding of phenytoin, propranolol, diazepam and AL01576 (an aldose reductase inhibitor) in human and rat diabetic serum. Pharm Res 5:261–265CrossRefPubMedGoogle Scholar
  11. 11.
    Doucet J, Fresel J, Hue G, Moore N (1993) Protein binding of digitoxin, valproate and phenytoin in sera from diabetics. Eur J Clin Pharmacol 45:577–579CrossRefPubMedGoogle Scholar
  12. 12.
    Bohney JP, Feldhoff RC (1992) Effects of nonenzymatic glycosylation and fatty acids on tryptophan binding to human serum albumin. Biochem Pharmacol 43:1829–1834CrossRefPubMedGoogle Scholar
  13. 13.
    Joseph KS, Hage DS (2010) The effects of glycation on the binding of human serum albumin to warfarin and L-tryptophan. J Pharm Biomed Anal 53:811–818CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Joseph KS, Anguizola J, Jackson AJ, Hage DS (2010) Chromatographic analysis of acetohexamide binding to glycated human serum albumin. J Chromatogr B 878:2775–2781CrossRefGoogle Scholar
  15. 15.
    Joseph KS, Anguizola J, Hage DS (2011) Binding of tolbutamide to glycated human serum albumin. J Pharm Biomed Anal 54:426–432CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Matsuda R, Anguizola J, Joseph KS, Hage DS (2011) High-performance affinity chromatography and the analysis of drug interactions with modified proteins: binding of gliclazide with glycated human serum albumin. Anal Bioanal Chem 401:2811–2819CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Jackson AJ, Anguizola J, Pfaunmiller EL, Hage DS (2013) Use of entrapment and high-performance affinity chromatography to compare the binding of drugs and site-specific probes with normal and glycated human serum albumin. Anal Bioanal Chem 405:5833–5841CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Joseph KS, Hage DS (2010) Characterization of the binding of sulfonylurea drugs to HSA by high-performance affinity chromatography. J Chromatogr B 878:1590–1598CrossRefGoogle Scholar
  19. 19.
    Matsuda R, Anguizola J, Joseph KS, Hage DS (2012) Analysis of drug interactions with modified proteins by high-performance affinity chromatography: binding of glibenclamide to normal and glycated human serum albumin. J Chromatogr A 1265:114–122CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Anguizola J, Joseph KS, Barnaby OS, Matsuda R, Alvarado G, Clarke W, Cerny RL, Hage DS (2013) Development of affinity microcolumns for drug–protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin. Anal Chem 85:4453–4460CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug–protein interactions. J Chromatogr B 699:499–525CrossRefGoogle Scholar
  22. 22.
    Heegaard NHH, Schou C (2006) Affinity ligands in capillary electrophoresis. In: Hage DS (ed) Handbook of affinity chromatography. CRC, Boca Raton, Chapter 26Google Scholar
  23. 23.
    Hoffmann T, Martin MM (2010) CE-ESI-MS/MS as a rapid screening tool for the comparison of protein-ligand interactions. Electrophoresis 31:1248–1255CrossRefPubMedGoogle Scholar
  24. 24.
    Hage DS (2001) Chromatographic and electrophoretic studies of protein binding to chiral solutes. J Chromatogr B 906:459–481CrossRefGoogle Scholar
  25. 25.
    Hage DS, Anguizola JA, Jackson AJ, Matsuda R, Papastavros E, Pfaunmiller E, Tong Z, Vargas-Badilla J, Yoo MJ, Zheng X (2011) Chromatographic analysis of drug interactions in the serum proteome. Anal Methods 3:1449–1460CrossRefGoogle Scholar
  26. 26.
    Hage DS (1999) Affinity chromatography: a review of clinical applications. Clin Chem 45:593–615PubMedGoogle Scholar
  27. 27.
    Hage DS (2012) Affinity chromatography. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, New YorkGoogle Scholar
  28. 28.
    Turkova J (1978) Affinity chromatography. Elsevier, AmsterdamGoogle Scholar
  29. 29.
    Scouten WH (1985) Affinity chromatography: bioselective adsorption on inert matrices. Wiley, New YorkGoogle Scholar
  30. 30.
    Schott H (1985) Affinity chromatography: template chromatography of nucleic acids and proteins. Dekker, New YorkGoogle Scholar
  31. 31.
    Parikh I, Cuatrecasas P (1985) Affinity chromatography. Chem Eng News 63:17–29CrossRefGoogle Scholar
  32. 32.
    Walters RR (1985) Affinity chromatography. Anal Chem 57:AA1099–AA1114Google Scholar
  33. 33.
    Mohr P, Pommerening K (1985) Affinity chromatography: practical and theoretical aspects. Dekker, New YorkGoogle Scholar
  34. 34.
    Jones K (1991) Affinity chromatography—an overview. Anal Proceed 28:143–144Google Scholar
  35. 35.
    Hermanson GT, Mallia AK, Smith PK (1992) Immobilized affinity ligand techniques. Academic, San DiegoGoogle Scholar
  36. 36.
    Ngo TT (ed) (1993) Molecular interactions in bioseparations. Plenum, New YorkGoogle Scholar
  37. 37.
    Hage DS (1998) In: Katz E, Eksteen R, Miller N (eds) Handbook of HPLC. Marcel Dekker, New York, Chapter 13Google Scholar
  38. 38.
    Chaiken IM (ed) (1987) Analytical affinity chromatography. CRC, Boca RatonGoogle Scholar
  39. 39.
    Schiel JE, Hage DS (2009) Kinetic studies of biological interactions by affinity chromatography. J Sep Sci 32:1507–1522CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Matsuda R, Bi C, Anguizola J, Sobansky M, Rodriguez E, Vargas Badilla J, Zheng X, Hage B, Hage DS (2014) Studies of metabolite-protein interactions: a review. J Chromatogr B 966:48–58CrossRefGoogle Scholar
  41. 41.
    Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 6th edn. W.H. Freeman Publishers, New YorkGoogle Scholar
  42. 42.
    Colmenarejo G (2003) In silico prediction of drug-binding strengths to human serum albumin. Med Res Rev 23:275–301CrossRefPubMedGoogle Scholar
  43. 43.
    Mendez DL, Jensen RA, McElroy LA, Pena JM, Esquerra RM (2005) The effect of non-enzymatic glycation on the unfolding of human serum albumin. Arch Biochem Biophys 444:92–99CrossRefPubMedGoogle Scholar
  44. 44.
    Iberg N, Fluckiger R (1986) Nonenzymatic glycosylation of albumin in vivo: identification of multiple glycosylated sites. J Biol Chem 261:13542–13545PubMedGoogle Scholar
  45. 45.
    Matsuda R, Kye S, Anguizola J, Hage DS (2014) Studies of drug interactions with glycated human serum albumin by high-performance affinity chromatography. Rev Anal Chem. in press. doi:  10.1515/revac-2013-0029
  46. 46.
    Lapolla A, Fedele D, Reitano R, Bonfante L, Guizzo M, Seraglia R, Tubaro M, Traldi P (2005) Mass spectrometric study of in vivo production of advanced glycation end-products/peptides. J Mass Spectrom 40:969–972CrossRefPubMedGoogle Scholar
  47. 47.
    Lapolla A, Fedele D, Seraglia R, Traldi P (2006) The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update. Mass Spectrom Rev 25:775–797CrossRefPubMedGoogle Scholar
  48. 48.
    Anguizola J, Matsuda R, Barnaby OS, Joseph KS, Wa C, Debolt E, Koke M, Hage DS (2013) Review: glycation of human serum albumin. Clin Chim Acta 425:64–76CrossRefPubMedGoogle Scholar
  49. 49.
    Barnaby OS, Wa C, Cerny RL, Clarke W, Hage DS (2010) Quantitative analysis of glycation sites on human serum labeling using 16O/18O labeling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 411:1102–1110CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Barnaby OS, Cerny RL, Clarke W, Hage DS (2011) Comparison of modification sites formed on human serum albumin at various stages of glycation. Clin Chim Acta 412:277–285CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic, San DiegoGoogle Scholar
  52. 52.
    Rookh HV, Zaidi AR (2008) A review of glycated albumin as an intermediate glycation index for controlling diabetes. J Diabetes Sci Technol 2:1114–1121CrossRefGoogle Scholar
  53. 53.
    Skillman TG, Feldman JM (1981) The pharmacology of sulfonylureas. Am J Med 70:361–372CrossRefPubMedGoogle Scholar
  54. 54.
    Lapolla A, Fedele D, Reitano R, Arico NC, Seraglia R, Traldi P, Marotta E, Tonani R (2004) Enzymatic digestion and mass spectrometry in the study of advance glycation end products/peptides. J Am Soc Mass Spectrom 25:496–509CrossRefGoogle Scholar
  55. 55.
    Ney KA, Colley KJ, Pizzo SV (1981) The standardization of the thiobarbituric acid assay for nonenzymatic glucosylation of human serum albumin. Anal Biochem 118:294–300CrossRefPubMedGoogle Scholar
  56. 56.
    Mallik R, Hage DS (2006) Affinity monolith chromatography. J Sep Sci 12:1686–1704CrossRefGoogle Scholar
  57. 57.
    Pfaunmiller EL, Paulemond ML, Dupper CM, Hage DS (2013) Affinity monolith chromatography: A review of principles and recent analytical applications. Anal Bioanal Chem 405:2133–2145CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Pfaunmiller E, Moser AC, Hage DS (2012) Biointeraction analysis of immobilized antibodies and related agents by high-performance immunoaffinity chromatography. Methods 56:130–135CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Walters RR (1982) High-performance affinity chromatography: pore-size effects. J Chromatogr A 249:19–28CrossRefGoogle Scholar
  60. 60.
    Larsson PO (1984) High-performance liquid affinity chromatography. Methods Enzymol 104:212–223CrossRefPubMedGoogle Scholar
  61. 61.
    Conrad ML, Moser AC, Hage DS (2009) Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: analysis by high-performance affinity chromatography. J Sep Sci 32:1145–1155CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Joseph KS, Moser AC, Basiga S, Schiel JE, Hage DS (2009) Evaluation of alternatives to warfarin as probes for Sudlow site I of human serum albumin: characterization by high-performance affinity chromatography. J Chromatogr A 1216:3492–3500CrossRefPubMedCentralPubMedGoogle Scholar
  63. 63.
    Hage DS, Sengupta A (1999) Characterization of the binding of digitoxin and acetyldigitoxin to human serum albumin by high-performance affinity chromatography. J Chromatogr B 724:91–100CrossRefGoogle Scholar
  64. 64.
    Hage DS, Chen J (2006) Quantitative affinity chromatography: practical aspects. In: Hage DS (ed) Handbook of affinity chromatography. CRC, Boca Raton, Chapter 22Google Scholar
  65. 65.
    Tweed SA, Loun B, Hage DS (1997) Effect of ligand, heterogeneity in the characterization of affinity columns by frontal analysis. Anal Chem 69:4790–4798CrossRefPubMedGoogle Scholar
  66. 66.
    Tong Z, Hage DS (2011) Detection of heterogeneous drug–protein binding by frontal analysis and high-performance affinity chromatograph and peak profiling. J Chromatogr A 1218:8915–8924CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Loun B, Hage DS (1995) Characterization of thyroxine albumin-binding using high-performance affinity chromatography. 2. Comparison of the binding of thyroxine, triiodothyronines and related compounds at the warfarin and indole sites of human serum albumin. J Chromatogr B 665:303–314CrossRefGoogle Scholar
  68. 68.
    Wa C, Cerny RL, Hage DS (2006) Identification and quantitative studies on protein immobilization sites by stable isotope labeling and mass spectrometry. Anal Chem 78:7967–7977CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Moser AC, Kingsbury C, Hage DS (2006) Stability of warfarin solutions for drug–protein binding measurements: spectroscopic and chromatographic studies. J Pharm Biomed Anal 41:1101–1109CrossRefPubMedGoogle Scholar
  70. 70.
    Yalkowsky SH, Dannenfelser RM (1992) Aquasol database of aqueous solubility, Ver. 5, University of Arizona, TucsonGoogle Scholar
  71. 71.
    Ohnmacht CM, Chen S, Tong Z, Hage DS (2006) Studies by biointeraction chromatography of binding by phenytoin metabolites to human serum albumin. J Chromatogr B 836:83–91CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ryan Matsuda
    • 1
  • Jeanethe Anguizola
    • 1
  • Krina S. Hoy
    • 1
  • David S. Hage
    • 1
  1. 1.Department of ChemistryUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations