Tissue-Specific Gene Expression Profiling by Cell Sorting

  • Pui-Leng Ip
  • Kenneth D. BirnbaumEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)


Many cell populations have been labeled using stable reporters containing a fluorescent protein. These same marker lines can be used to capture specific cell types or marked cell populations after a brief enzymatic digestion to dissociate tissues. Here, we describe the use of Fluorescence Activated Cell Sorting (FACS) to isolate a rare population of cells marked with Green Fluorescent Protein (GFP). The FACS is a powerful selection tool that can be used to isolate high-quality RNA while selecting for fluorescence, cell size, and other properties.

Key words

FACS Cell sorting Cell type isolation RNA profiling Plants Quiescent Center 


  1. 1.
    Birnbaum K et al (2003) A gene expression map of the Arabidopsis root. Science 302(5652):1956–1960CrossRefPubMedGoogle Scholar
  2. 2.
    Harkins KR, Galbraith DW (1984) Flow sorting and culture of plant protoplasts. Physiol Plant 60:43–52CrossRefGoogle Scholar
  3. 3.
    Dinneny JR et al (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320(5878):942–945CrossRefPubMedGoogle Scholar
  4. 4.
    Bargmann BO et al (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:688CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Bargmann BO, Birnbaum KD (2010) Fluorescence activated cell sorting of plant protoplasts. J Vis Exp (36)Google Scholar
  6. 6.
    Lee JY et al (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci U S A 103(15):6055–6060CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Brady SM et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851):801–806CrossRefPubMedGoogle Scholar
  8. 8.
    Yadav RK et al (2009) Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. Proc Natl Acad Sci U S A 106(12):4941–4946CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Bargmann BO, Birnbaum KD (2009) Positive fluorescent selection permits precise, rapid and in-depth over-expression analysis in plant protoplasts. Plant Physiol 149:1231CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Bargmann BO et al (2013) TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol Plant 6:978CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Para A et al (2014) Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proc Natl Acad Sci U S A 111(28):10371–10376CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45(10):705–708CrossRefGoogle Scholar
  13. 13.
    Fukuda H, Komamine A (1980) Establishment of an experimental system for the study of tracheary element differentiation from single cells isolated from the mesophyll of Zinnia elegans. Plant Physiol 65(1):57–60CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Krikorian AD, Berquam DL (1969) Plant cell and tissue cultures: the role of Haberlandt. Bot Rev 35:59–88CrossRefGoogle Scholar
  15. 15.
    Vasil V, Hildebrandt AC (1965) Differentiation of tobacco plants from single, isolated cells in microcultures. Science 150:889–892CrossRefPubMedGoogle Scholar
  16. 16.
    Haberlandt G (1902) Culturversuche mit isolierten Pflanzenzellen. Sitzungsber Akad Wiss Wien Math Nat 111:69–91Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA
  2. 2.Department of Biology, Center for Genomics and Systems BiologyNew York UniversityNew YorkUSA

Personalised recommendations