Descriptive vs. Mechanistic Network Models in Plant Development in the Post-Genomic Era

  • J. Davila-Velderrain
  • J. C. Martinez-Garcia
  • E. R. Alvarez-BuyllaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)


Network modeling is now a widespread practice in systems biology, as well as in integrative genomics, and it constitutes a rich and diverse scientific research field. A conceptually clear understanding of the reasoning behind the main existing modeling approaches, and their associated technical terminologies, is required to avoid confusions and accelerate the transition towards an undeniable necessary more quantitative, multidisciplinary approach to biology. Herein, we focus on two main network-based modeling approaches that are commonly used depending on the information available and the intended goals: inference-based methods and system dynamics approaches. As far as data-based network inference methods are concerned, they enable the discovery of potential functional influences among molecular components. On the other hand, experimentally grounded network dynamical models have been shown to be perfectly suited for the mechanistic study of developmental processes. How do these two perspectives relate to each other? In this chapter, we describe and compare both approaches and then apply them to a given specific developmental module. Along with the step-by-step practical implementation of each approach, we also focus on discussing their respective goals, utility, assumptions, and associated limitations. We use the gene regulatory network (GRN) involved in Arabidopsis thaliana Root Stem Cell Niche patterning as our illustrative example. We show that descriptive models based on functional genomics data can provide important background information consistent with experimentally supported functional relationships integrated in mechanistic GRN models. The rationale of analysis and modeling can be applied to any other well-characterized functional developmental module in multicellular organisms, like plants and animals.

Key words

Gene regulatory networks Root stem cell niche Cell differentiation Attractor Morphogenesis System dynamics Mathematical model Computational simulation Network inference Descriptive model Mechanistic model 



J.D.V acknowledges the support of CONACYT and the Centre for Genomic Regulation (CRG), Barcelona, Spain; while spending a research visit in the lab of Stephan Ossowski. This chapter constitutes a partial fulfillment of the graduate program Doctorado en Ciencias Biomédicas of the Universidad Nacional Autónoma de México, UNAM in which J.D.V. developed this project. This work was supported by grants CONACYT 180098, 180380, 167705, 152649 and UNAM-DGAPA-PAPIIT: IN203113, IN 203214, IN203814, UC Mexus ECO-IE415. The authors acknowledge logistical and administrative help of Diana Romo.


  1. 1.
    Forgacs G, Newman SA (2005) Biological physics of the developing embryo. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Alvarez-Buylla ER, Benítez M, Dávila EB et al (2007) Gene regulatory network models for plant development. Curr Opin Plant Biol 10(1):83–91CrossRefPubMedGoogle Scholar
  3. 3.
    Huang S, Kauffman S (2009) Complex gene regulatory networks—from structure to biological observables: cell fate determination. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Heidelberg, pp 1180–1213CrossRefGoogle Scholar
  4. 4.
    Alvarez-Buylla ER, Azpeitia E, Barrio R, Benítez M, Padilla-Longoria P (2010) From ABC genes to regulatory networks, epigenetic landscapes and flower morphogenesis: making biological sense of theoretical approaches. Semin Cell Dev Biol 21(1):108–117CrossRefPubMedGoogle Scholar
  5. 5.
    Kaneko K (2006) Life: an introduction to complex systems biology. Springer, New YorkGoogle Scholar
  6. 6.
    Azpeitia E, Alvarez-Buylla ER (2012) A complex systems approach to Arabidopsis root stem-cell niche developmental mechanisms: from molecules, to networks, to morphogenesis. Plant Mol Biol 80(4–5):351–363CrossRefPubMedGoogle Scholar
  7. 7.
    Azpeitia E, Davila-Velderrain J, Villarreal C et al (2014) Gene regulatory network models for floral organ determination. In: Riechmann JL, Wellmer F (eds) Flower development. Springer, New York, pp 441–469CrossRefGoogle Scholar
  8. 8.
    Barrio RÁ, Hernández-Machado A, Varea C, Romero-Arias JR, Alvarez-Buylla E (2010) Flower development as an interplay between dynamical physical fields and genetic networks. PLoS One 5(10):e13523CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Barrio RÁ, Romero-Arias JR, Noguez MA et al (2013) Cell patterns emerge from coupled chemical and physical fields with cell proliferation dynamics: the Arabidopsis thaliana root as a study system. PLoS Comput Biol 9(5):e1003026CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Proost S, Van Bel M, Sterck L et al (2009) PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21(12):3718–3731CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10(5):107CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Hawkins RD, Hon GC, Ren B (2010) Next-generation genomics: an integrative approach. Nat Rev Genet 11(7):476–486PubMedCentralPubMedGoogle Scholar
  13. 13.
    Lamesch P, Berardini TZ, Li D et al (2012) The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(D1):D1202–D1210CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Haughn GW, Somerville CR (1988) Genetic control of morphogenesis in Arabidopsis. Dev Genet 9(2):73–89CrossRefGoogle Scholar
  15. 15.
    Rowan BA, Weigel D, Koenig D (2011) Developmental genetics and new sequencing technologies: the rise of nonmodel organisms. Dev Cell 21(1):65–76CrossRefPubMedGoogle Scholar
  16. 16.
    Bowman JL, Smyth DR, Meyerowitz EM (2012) The ABC model of flower development: then and now. Development 139(22):4095–4098CrossRefPubMedGoogle Scholar
  17. 17.
    Lander AD (2010) The edges of understanding. BMC Biol 8(1):40CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Yaffe MB (2013) The scientific drunk and the lamppost: massive sequencing efforts in cancer discovery and treatment. Sci Signal 6(269):pe13CrossRefPubMedGoogle Scholar
  19. 19.
    Lee WP, Tzou WS (2009) Computational methods for discovering gene networks from expression data. Brief Bioinform 10(4):408–423PubMedGoogle Scholar
  20. 20.
    De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8(10):717–729PubMedGoogle Scholar
  21. 21.
    Villaverde AF, Banga JR (2014) Reverse engineering and identification in systems biology: strategies, perspectives and challenges. J R Soc Interface 11(91):20130505CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Ellner SP, Guckenheimer J (2011) Dynamic models in biology. Princeton University Press, Princeton, NJGoogle Scholar
  23. 23.
    Kell DB, Oliver SG (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis‐driven science in the post‐genomic era. Bioessays 26(1):99–105CrossRefPubMedGoogle Scholar
  24. 24.
    Dehmer M, Emmert-Streib F, Graber A et al (2011) Applied statistics for network biology: methods in systems biology. Wiley, New YorkCrossRefGoogle Scholar
  25. 25.
    Hartwell LH, Hopfield JJ, Leibler S (1999) From molecular to modular cell biology. Nature 402:C47–C52CrossRefPubMedGoogle Scholar
  26. 26.
    Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network motifs. Proc Natl Acad Sci U S A 102(39):13773–13778CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Espinosa-Soto C, Wagner A (2010) Specialization can drive the evolution of modularity. PLoS Comput Biol 6(3):e1000719CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Mitra K, Carvunis AR, Ramesh SK et al (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14(10):719–732CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Mendoza L, Alvarez-Buylla ER (1998) Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 193(2):307–319. doi: 10.1006/jtbi.1998.0701 CrossRefPubMedGoogle Scholar
  30. 30.
    Espinosa-Soto C, Padilla-Longoria P, Alvarez-Buylla ER (2004) A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell 16:2923–2939CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223(1):1–18CrossRefPubMedGoogle Scholar
  32. 32.
    Azpeitia E, Benítez M, Vega I, Villarreal C, Alvarez-Buylla ER (2010) Single-cell and coupled GRN models of cell patterning in the Arabidopsis thaliana root stem cell niche. BMC Syst Biol 4:134CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Azpeitia E, Weinstein N, Benítez M et al (2013) Finding missing interactions of the Arabidopsis thaliana root stem cell niche gene regulatory network. Front Plant Sci 4:110CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Caragea D, Welch SM, Hsu WH (2010) Handbook of research on computational methodologies in gene regulatory networks. Medical Information Science Reference, Hershey, PAGoogle Scholar
  35. 35.
    Wang R, Li C, Aihara K (2010) Modeling biomolecular networks in cells. Springer, New YorkGoogle Scholar
  36. 36.
    Lingeman JM, Shasha D (2012) Network inference in molecular biology. Springer, New YorkCrossRefGoogle Scholar
  37. 37.
    Friedel S, Usadel B, Von Wirén N et al (2012) Reverse engineering: a key component of systems biology to unravel global abiotic stress cross-talk. Front Plant Sci 3:294CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Usadel B, Fernie AR (2013) The plant transcriptome—from integrating observations to models. Front Plant Sci 4:48CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Jaeger J, Sharpe J (2014) On the concept of mechanism in development. In: Minelli A, Pradeu T (eds) Towards a theory of development. Oxford University Press, Oxford, p 56CrossRefGoogle Scholar
  40. 40.
    Hua F, Hautaniemi S, Yokoo R et al (2006) Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways. J R Soc Interface 3(9):515–526CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    McGeachie MJ, Chang HH, Weiss ST (2014) CGBayesNets: conditional Gaussian Bayesian network learning and inference with mixed discrete and continuous data. PLoS Comput Biol 10(6):e1003676CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Crombach A, Wotton KR, Cicin-Sain D et al (2012) Efficient reverse-engineering of a developmental gene regulatory network. PLoS Comput Biol 8(7):e1002589CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mao L, Van Hemert JL, Dash S et al (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10(1):346CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Feltus FA, Ficklin SP, Gibson SM et al (2013) Maximizing capture of gene co-expression relationships through pre-clustering of input expression samples: an Arabidopsis case study. BMC Syst Biol 7(1):44CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Montes RA, Coello G, González-Aguilera KL et al (2014) ARACNe-based inference, using curated microarray data, of Arabidopsis thaliana root transcriptional regulatory networks. BMC Plant Biol 14(1):97CrossRefGoogle Scholar
  46. 46.
    Netotea S, Sundell D, Street NR et al (2014) ComPlEx: conservation and divergence of co-expression networks in A. thaliana, Populus and O. sativa. BMC Genomics 15(1):106CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Meyer PE, Lafitte F, Bontempi G (2008) minet: AR/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinformatics 9(1):461CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Hansen KD, Gentry J, Long L et al (2009) Rgraphviz: provides plotting capabilities for R graph objects. R package version 2.8.1. 2009.Google Scholar
  49. 49.
    Usadel B, Obayashi T, Mutwil M et al (2009) Co‐expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651CrossRefPubMedGoogle Scholar
  50. 50.
    Cho DY, Kim YA, Przytycka TM (2012) Network biology approach to complex diseases. PLoS Comput Biol 8(12):e1002820CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Cramer GR, Urano K, Delrot S et al (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11(1):163CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Ficklin SP, Feltus FA (2011) Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol 156(3):1244–1256CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Hernández-Lemus E, Velázquez-Fernández D, Estrada-Gil JK et al (2009) Information theoretical methods to deconvolute genetic regulatory networks applied to thyroid neoplasms. Phys Stat Mech Appl 388(24):5057–5069CrossRefGoogle Scholar
  54. 54.
    Meyer PE, Olsen C, Bontempi G (2011) Transcriptional network inference based on information theory. In: Dehmer M, Emmert-Streib F et al (eds) Applied statistics for network biology: methods in systems biology. Weinheim, Wiley-Blackwell, pp 67–89CrossRefGoogle Scholar
  55. 55.
    Margolin AA, Nemenman I, Basso K et al (2006) ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7(Suppl 1):S7CrossRefPubMedCentralPubMedGoogle Scholar
  56. 56.
    Sales G, Romualdi C (2011) parmigene—a parallel R package for mutual information estimation and gene network reconstruction. Bioinformatics 27(13):1876–1877CrossRefPubMedGoogle Scholar
  57. 57.
    Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224:177–178CrossRefPubMedGoogle Scholar
  58. 58.
    Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source Code Biol Med 3:16CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Davila-Velderrain J, Martinez-Garcia JC, Alvarez-Buylla ER (2014) Epigenetic landscape models: the post-genomic era. bioRxiv Google Scholar
  60. 60.
    Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet - an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380CrossRefPubMedGoogle Scholar
  61. 61.
    Huang S (2014) When correlation and causation coincide. Bioessays 36(1):1–2CrossRefPubMedGoogle Scholar
  62. 62.
    Lehner B, Lee I (2008) Network-guided genetic screening: building, testing and using gene networks to predict gene function. Brief Funct Genomic Proteomic 7(3):217–227CrossRefPubMedGoogle Scholar
  63. 63.
    Gershenfeld N (1999) The nature of mathematical modeling. Cambridge University Press, CambridgeGoogle Scholar
  64. 64.
    Arellano G, Argil J, Azpeitia E et al (2011) “Antelope”: a hybrid-logic model checker for branching-time Boolean GRN analysis. BMC Bioinformatics 12:490CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Naldi A, Berenguier D, Fauré A et al (2009) Logical modeling of regulatory networks with ginsim 2.3. Biosystems 97(2):134–139CrossRefPubMedGoogle Scholar
  66. 66.
    Corblin F, Fanchon E, Trilling L (2010) Applications of a formal approach to decipher discrete genetic networks. BMC Bioinformatics 11(1):385CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    De Jong H, Geiselmann J, Hernandez C et al (2003) Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3):336–344CrossRefPubMedGoogle Scholar
  68. 68.
    Calzone L, Fages F, Soliman S (2006) Biocham: an environment for modeling biological systems and formalizing experimental knowledge. Bioinformatics 22(14):1805–1807CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. Davila-Velderrain
    • 1
    • 2
  • J. C. Martinez-Garcia
    • 2
    • 3
  • E. R. Alvarez-Buylla
    • 1
    • 2
    Email author
  1. 1.Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de EcologíaUniversidad Nacional Autónoma de México, Ciudad UniversitariaMéxico D.F.Mexico
  2. 2.Centro de Ciencias de la Complejidad (C3)Universidad Nacional Autónoma de México, Ciudad UniversitariaMéxico D.F.Mexico
  3. 3.Departamento de Control AutomáticoCinvestav-IPNMéxico D.F.Mexico

Personalised recommendations