Skip to main content

Gene Functional Analysis Using Protoplast Transient Assays

  • Protocol
  • First Online:
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1284))

Abstract

The protoplast transient assay system has been widely used for rapid functional analyses of genes using cellular and biochemical approaches. This system has been increasingly employed for functional genetic studies using double-stranded (ds) RNA interference (RNAi). Here, we describe a modified procedure for the isolation of protoplasts from leaf mesophyll cells of 14-day-old Arabidopsis thaliana. This modification significantly simplifies and speeds up functional studies without compromising the yield and the viability of protoplasts. We also present the procedure for the isolation and transfection of protoplasts from mesophyll cells of an emerging model grass species, Brachypodium distachyon. Further, we detail procedures for RNAi-based functional studies of genes using transient expression of in vitro synthesized dsRNA in protoplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187(4741):962–963

    Article  Google Scholar 

  2. Jiang F, Zhu J, Liu H-L (2013) Protoplasts: a useful research system for plant cell biology, especially dedifferentiation. Protoplasma 250(6):1231–1238

    Article  CAS  PubMed  Google Scholar 

  3. Sheen J (2001) Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiol 127(4):1466–1475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bargmann BOR, Marshall-Colon A, Efroni I, Ruffel S, Birnbaum KD, Coruzzi GM, Krouk G (2013) TARGET: a transient transformation system for genome-wide transcription factor target discovery. Mol Plant 6(3):978–980

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. De Sutter V, Vanderhaeghen R, Tilleman S, Lammertyn F, Vanhoutte I, Karimi M, Inzé D, Goossens A, Hilson P (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44(6):1065–1076

    Article  PubMed  Google Scholar 

  6. Ding Y, Cao J, Ni L, Zhu Y, Zhang A, Tan M, Jiang M (2013) ZmCPK11 is involved in abscisic acid-induced antioxidant defence and functions upstream of ZmMPK5 in abscisic acid signalling in maize. J Exp Bot 64(4):871–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Shi B, Ni L, Zhang A, Cao J, Zhang H, Qin T, Tan M, Zhang J, Jiang M (2012) OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice. Mol Plant 5(6):1359–1374

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Y, Zuo M, Liang Y, Jiang M, Zhang J, Scheller HV, Tan M, Zhang A (2013) MAP65-1a positively regulates H2O2 amplification and enhances brassinosteroid-induced antioxidant defence in maize. J Exp Bot 64(12):3787–3802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Zhai Z, Sooksa-nguan T, Vatamaniuk OK (2009) Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts. Plant Physiol 149(2):642–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kim J, Somers DE (2010) Rapid Assessment of Gene Function in the Circadian Clock Using Artificial MicroRNA in Arabidopsis Mesophyll Protoplasts. Plant Physiol 154(2):611–621

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Li J-F, Zhang D (2014) Quantitative analysis of protein-protein interactions by Split Firefly Luciferase complementation in plant protoplasts. Curr Protoc Mol Biol 107:20.9.1-20.9.8, © 2014 by John Wiley & Sons, Inc

    Google Scholar 

  12. Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4(1):29–38

    Article  CAS  PubMed  Google Scholar 

  13. Schwab R, Ossowski S, Warthmann N, Weigel D (2010) Directed gene silencing with artificial microRNAs. Methods Mol Biol 592:71–88

    Article  CAS  PubMed  Google Scholar 

  14. Burch-Smith TM, Schiff M, Liu Y, Dinesh-Kumar SP (2006) Efficient virus-induced gene silencing in Arabidopsis. Plant Physiol 142(1):21–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Dinesh-Kumar SP, Anandalakshmi R, Marathe R, Schiff M, Liu Y (2003) Virus-induced gene silencing. Methods Mol Biol 236:287–294

    CAS  PubMed  Google Scholar 

  16. Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30(4):296–303

    Article  CAS  PubMed  Google Scholar 

  17. Li J-F, Chung HS, Niu Y, Bush J, McCormack M, Sheen J (2013) Comprehensive protein-based artificial MicroRNA screens for effective gene silencing in plants. Plant Cell Online 25(5):1507–1522

    Article  CAS  Google Scholar 

  18. Vogel J, Hill T (2008) High-efficiency Agrobacterium-mediated transformation of Brachypodium distachyon inbred line Bd21-3. Plant Cell Rep 27(3):471–478

    Article  CAS  PubMed  Google Scholar 

  19. Sastry SS, Ross BM (1997) Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes. J Biol Chem 272(13):8644–8652

    Article  CAS  PubMed  Google Scholar 

  20. Zhai Z, Jung HI, Vatamaniuk OK (2009) Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana. J Vis Exp 30

    Google Scholar 

  21. Rong M, He B, McAllister WT, Durbin RK (1998) Promoter specificity determinants of T7 RNA polymerase. Proc Natl Acad Sci U S A 95(2):515–519

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Jung HI, Zhai Z, Vatamaniuk OK (2011) Direct transfer of synthetic double-stranded RNA into protoplasts of Arabidopsis thaliana. Methods Mol Biol 744:109–127

    Article  CAS  PubMed  Google Scholar 

  23. Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A (2008) Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227(6):1343–1349

    Article  CAS  PubMed  Google Scholar 

  24. Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20(7):1736–1737

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Heinemann U, Saenger W (1983) Crystallographic study of mechanism of ribonuclease T1-catalysed specific RNA hydrolysis. J Biomol Struct Dyn 1(2):523–538

    Article  CAS  PubMed  Google Scholar 

  26. Jung HI, Gayomba SR, Yan J, Vatamaniuk OK (2014) Brachypodium dystachyon as a model system for studies of copper transport in cereal crops. Frontiers Plant Sci 5:236

    Article  Google Scholar 

  27. Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci U S A 96(12):7110–7115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107(4):1059–1066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  30. Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. J Biol Chem 275(40):31451–31459

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the USDA National Institute of Food and Agriculture, Hatch projects NYC -125433, NYC-125485 and MRF S1041 NYC 125853, awarded to O.K.V. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the National Institute of Food and Agriculture (NIFA) or the US Department of Agriculture (USDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olena K. Vatamaniuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jung, Hi., Yan, J., Zhai, Z., Vatamaniuk, O.K. (2015). Gene Functional Analysis Using Protoplast Transient Assays. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics