Advertisement

Whole-Genome DNA Methylation Profiling with Nucleotide Resolution

  • Tzung-Fu HsiehEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)

Abstract

In many eukaryotic organisms, methylation at the fifth carbon of cytosine (5mC) is a stable epigenetic mark crucial for many biological processes, including cell differentiation, X-chromosome inactivation, transposon silencing, and genomic imprinting. DNA methylation can be stably inherited to the subsequent generation. It can also change dynamically in response to developmental cues or environmental stimuli, and is an important regulator for developmental switch and cell fate determination. Consequently, many human diseases are associated with aberrant DNA methylation. Gene-specific methylation analysis by sequencing of bisulfite-treated genomic DNA has been instrumental in understanding how DNA methylation affects gene transcription. In recent years, techniques have been developed for genome-wide 5mC detection, and complete methylome at single base resolution has been reported for several organisms, providing unprecedented details on the dynamic nature of DNA methylation during development. With the advance in high-throughput sequencing and the availability of genome sequences, mapping the methylome for species with complex genomes has become increasingly feasible.

Key words

5-Methylcytosine Epigenetics SPRI DNA methylome Bisulfite conversion Next-gen sequencing 

Notes

Acknowledgement

This work is partly supported by the State of NC appropriations as distributed by the University of North Carolina General Administration and the NC Agricultural Research Service Office at NC State University.

References

  1. 1.
    Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Zhang X, Yazaki J, Sundaresan A, Cokus S, Shan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1206CrossRefPubMedGoogle Scholar
  3. 3.
    Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69CrossRefPubMedGoogle Scholar
  4. 4.
    Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20(2):259–276. doi: 10.1105/tpc.107.056879 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H, Qi Y, Liu XS, Deng XW (2009) Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21(4):1053–1069. doi: 10.1105/tpc.109.065714 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Cokus SJ, Fing S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Gehring M, Huh JH, Hsieh TF, Penterman J, Choi Y, Harada JJ, Goldberg RB, Fischer RL (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124(3):495–506CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Gehring M, Reik W, Henikoff S (2009) DNA demethylation by DNA repair. Trends Genet 25:82–90CrossRefPubMedGoogle Scholar
  9. 9.
    Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL, Zilberman D (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324(5933):1451–1454. doi: 10.1126/science.1172417 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Hsieh TF, Shin J, Uzawa R, Silva P, Cohen S, Bauer MJ, Hashimoto M, Kirkbride RC, Harada JJ, Zilberman D, Fischer RL (2011) Regulation of imprinted gene expression in Arabidopsis endosperm. Proc Natl Acad Sci U S A 108(5):1755–1762. doi: 10.1073/pnas.1019273108 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Zemach A, Kim MY, Silva P, Rodrigues JA, Dotson B, Brooks MD, Zilberman D (2010) Local DNA hypomethylation activates genes in rice endosperm. Proc Natl Acad Sci U S A 107(43):18729–18734. doi: 10.1073/pnas.1009695107 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh CT, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM (2011) Parent-of-origin effects on gene expression and DNA methylation in the maize endosperm. Plant Cell 23(12):4221–4233. doi: 10.1105/tpc.111.092668 CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Waters AJ, Bilinski P, Eichten SR, Vaughn MW, Ross-Ibarra J, Gehring M, Springer NM (2013) Comprehensive analysis of imprinted genes in maize reveals allelic variation for imprinting and limited conservation with other species. Proc Natl Acad Sci U S A 110(48):19639–19644. doi: 10.1073/pnas.1309182110 CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Ndlovu MN, Denis H, Fuks F (2011) Exposing the DNA methylome iceberg. Trends Biochem Sci 36(7):381–387. doi: 10.1016/j.tibs.2011.03.002 PubMedGoogle Scholar
  15. 15.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23(7):781–783. doi: 10.1101/gad.1787609 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Haig D (2004) The (dual) origin of epigenetics. Cold Spring Harbor Symp Quant Biol 69:67–70. doi: 10.1101/sqb.2004.69.67 CrossRefPubMedGoogle Scholar
  17. 17.
    Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3(3):594–602. doi: 10.1093/mp/ssq014 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22(9):3118–3129. doi: 10.1105/tpc.110.078493 CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Tittel-Elmer M, Bucher E, Broger L, Mathieu O, Paszkowski J, Vaillant I (2010) Stress-induced activation of heterochromatic transcription. PLoS Genet 6(10):e1001175. doi: 10.1371/journal.pgen.1001175 CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928CrossRefPubMedGoogle Scholar
  21. 21.
    Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE (2007) The SRA methyl-cytosine-binding domain links DNA and histone methylation. Curr Biol 17:379–384CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen SE (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080CrossRefPubMedGoogle Scholar
  24. 24.
    Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21(3):367–376. doi: 10.1016/j.ceb.2009.01.025 CrossRefPubMedGoogle Scholar
  25. 25.
    Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153(1):193–205. doi: 10.1016/j.cell.2013.02.033 CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304. doi: 10.1038/nrg2540 CrossRefPubMedGoogle Scholar
  27. 27.
    Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9(6):465–476. doi: 10.1038/nrg2341 CrossRefPubMedGoogle Scholar
  28. 28.
    Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6–21CrossRefPubMedGoogle Scholar
  29. 29.
    Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97(10):5237–5242CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the Arabidopsis genome. Cell 133:395–397CrossRefGoogle Scholar
  32. 32.
    Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy PL, Paul CL (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, Yu M, Tonti-Filippini J, Heyn H, Hu S, Wu JC, Rao A, Esteller M, He C, Haghighi FG, Sejnowski TJ, Behrens MM, Ecker JR (2013) Global epigenomic reconfiguration during mammalian brain development. Science 341(6146):1237905. doi: 10.1126/science.1237905 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N, Ray P, Whitaker JW, Tian S, Hawkins RD, Leung D, Yang H, Wang T, Lee AY, Swanson SA, Zhang J, Zhu Y, Kim A, Nery JR, Urich MA, Kuan S, Yen CA, Klugman S, Yu P, Suknuntha K, Propson NE, Chen H, Edsall LE, Wagner U, Li Y, Ye Z, Kulkarni A, Xuan Z, Chung WY, Chi NC, Antosiewicz-Bourget JE, Slukvin I, Stewart R, Zhang MQ, Wang W, Thomson JA, Ecker JR, Ren B (2013) Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153(5):1134–1148. doi: 10.1016/j.cell.2013.04.022 CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-Bourget J, O’Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R, Ren B, Thomson JA, Evans RM, Ecker JR (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471(7336):68–73. doi: 10.1038/nature09798 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328(5980):916–919. doi: 10.1126/science.1186366 CrossRefPubMedGoogle Scholar
  37. 37.
    Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA, Zemach A, Chumak N, Machlicova A, Nishimura T, Rojas D, Fischer RL, Tamaru H, Zilberman D (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337(6100):1360–1364. doi: 10.1126/science.1224839 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Huff JT, Zilberman D (2014) Dnmt1-independent CG methylation contributes to nucleosome positioning in diverse eukaryotes. Cell 156(6):1286–1297. doi: 10.1016/j.cell.2014.01.029 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Zeng J, Konopka G, Hunt BG, Preuss TM, Geschwind D, Yi SV (2012) Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution. Am J Hum Genet 91(3):455–465. doi: 10.1016/j.ajhg.2012.07.024 CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9(2):145–151. doi: 10.1038/nmeth.1828 CrossRefPubMedGoogle Scholar
  41. 41.
    Chatterjee A, Stockwell PA, Rodger EJ, Morison IM (2012) Comparison of alignment software for genome-wide bisulphite sequence data. Nucleic Acids Res 40(10):e79. doi: 10.1093/nar/gks150 CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Sun D, Xi Y, Rodriguez B, Park HJ, Tong P, Meong M, Goodell MA, Li W (2014) MOABS: model based analysis of bisulfite sequencing data. Genome Biol 15(2):R38. doi: 10.1186/gb-2014-15-2-r38 CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13(10):R83. doi: 10.1186/gb-2012-13-10-r83 CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Knierim E, Lucke B, Schwarz JM, Schuelke M, Seelow D (2011) Systematic comparison of three methods for fragmentation of long-range PCR products for next generation sequencing. PLoS One 6(11):e28240. doi: 10.1371/journal.pone.0028240 CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010. doi: 10.1038/nmeth.1270 CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    DeAngelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23(22):4742–4743CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Plant and Microbial Biology, Plants for Human Health InstituteNorth Carolina State UniversityKannapolisUSA

Personalised recommendations