Skip to main content

SHOREmap v3.0: Fast and Accurate Identification of Causal Mutations from Forward Genetic Screens

Part of the Methods in Molecular Biology book series (MIMB,volume 1284)

Abstract

Whole-genome resequencing of pools of recombinant mutant genomes allows direct linking of phenotypic traits to causal mutations. Such analysis, called mapping-by-sequencing, combines classical genetic mapping and next-generation sequencing by relying on selection-induced patterns within genome-wide allele frequency (AF) in pooled genomes. Mapping-by-sequencing can be performed with computational tools such as SHOREmap. Previous versions of SHOREmap, however, did not implement standardized analyses, but were specifically designed for particular experimental settings. Here, we introduce the usage of a novel and advanced implementation of SHOREmap (version 3.0), including several new features like file readers for commonly used file formats, SNP marker selection, and a stable calculation of mapping intervals. SHOREmap can be downloaded at shoremap.org.

Key words

  • Forward genetics
  • Bulk segregant analysis
  • Next-generation sequencing
  • Mapping-by-sequencing
  • SNP marker
  • Allele frequency analysis

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-2444-8_19
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-2444-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ossowski S et al (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  2. Nordström KJ et al (2013) Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nat Biotechnol 31:325–330

    CrossRef  PubMed  Google Scholar 

  3. Schneeberger K et al (2009) SHOREmap: simultaneous mapping and mutation identification by deep sequencing. Nat Methods 6:550–551

    CrossRef  CAS  PubMed  Google Scholar 

  4. Schneeberger K, Weigel D (2011) Fast-forward genetics enabled by new sequencing technologies. Trends Plant Sci 16:282–288

    CrossRef  CAS  PubMed  Google Scholar 

  5. Galvão VC et al (2012) Synteny-based mapping-by-sequencing enabled by targeted enrichment. Plant J 71:517–526

    PubMed  Google Scholar 

  6. Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15(10):662–676

    CrossRef  CAS  PubMed  Google Scholar 

  7. Austin RS et al (2011) Next-generation mapping of Arabidopsis genes. Plant J 67:715–725

    CrossRef  CAS  PubMed  Google Scholar 

  8. Cuperus JT et al (2010) Identification of MIR390a precursor processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci U S A 107:466–471

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  9. Lindner H et al (2012) SNP-Ratio Mapping (SRM): identifying lethal alleles and mutations in complex genetic backgrounds by next-generation sequencing. Genetics 191:1381–1386

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  10. Minevich G, Park DS, Blankenberg D, Poole RJ, Hobert O (2012) CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 192:1249–1269

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  11. Leshchiner I et al (2012) Mutation mapping and identification by whole genome sequencing. Genome Res 22:1541–1548

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  12. Abe A et al (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    CrossRef  CAS  PubMed  Google Scholar 

  13. Hartwig B, James GV, Konrad K, Schneeberger K, Turck F (2012) Fast isogenic mapping-by-sequencing of ethyl methanesulfonate-induced mutant bulks. Plant Physiol 160:591–600

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  14. Allen RS, Nakasugi K, Doran RL, Millar AA, Waterhouse PM (2013) Facile mutant identification via a single parental backcross method and application of whole genome sequencing based mapping pipelines. Front Plant Sci 4

    Google Scholar 

  15. Fekih R et al (2013) MutMap+: genetic mapping and mutant identification without crossing in rice. PLoS One 8:e68529

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  16. Velikkakam James G et al (2013) User guide for mapping-by-sequencing in Arabidopsis. Genome Biol 14:R61

    CrossRef  Google Scholar 

  17. Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  18. Schneeberger K et al (2009) Simultaneous alignment of short reads against multiple genomes. Genome Biol 10:R98

    CrossRef  PubMed Central  PubMed  Google Scholar 

  19. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  20. Li H et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    CrossRef  PubMed Central  PubMed  Google Scholar 

  21. DePristo MA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  22. Danecek P et al (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

  23. Schneeberger K et al (2011) Reference-guided assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad Sci U S A 108:10249–10254

    CrossRef  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korbinian Schneeberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sun, H., Schneeberger, K. (2015). SHOREmap v3.0: Fast and Accurate Identification of Causal Mutations from Forward Genetic Screens. In: Alonso, J., Stepanova, A. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 1284. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2444-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2444-8_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2443-1

  • Online ISBN: 978-1-4939-2444-8

  • eBook Packages: Springer Protocols