Tilling by Sequencing

  • Helen Tsai
  • Kathie Ngo
  • Meric Lieberman
  • Victor Missirian
  • Luca ComaiEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)


TILLING is a method to find mutations in a gene of interest by scanning amplicons from a mutagenized population for sequence changes, commonly a single nucleotide. In the past 5 years, mutation detection by sequencing has become increasingly popular. This chapter details the experimental flow for TILLING-by-Sequencing, highlighting the critical steps involved in tridimensional pooling of genomic DNA templates, preparation of libraries for high-throughput sequencing, and bioinformatic processing of the sequence data.

Key words

Mutation discovery Pooling High-throughput sequencing Bioinformatics 



This work was supported by the National Science Foundation (Plant Genome award no. DBI–0822383).


  1. 1.
    Wang TL, Uauy C, Robson F, Till B (2012) TILLING in extremis. Plant Biotechnol J 10:761–772CrossRefPubMedGoogle Scholar
  2. 2.
    Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694CrossRefPubMedGoogle Scholar
  3. 3.
    Qiu P, Shandilya H, D’Alessio JM, O’Connor K, Durocher J, Gerard GF (2004) Mutation detection using Surveyor nuclease. Biotechniques 36:702–707PubMedGoogle Scholar
  4. 4.
    Triques K, Piednoir E, Dalmais M et al (2008) Mutation detection using ENDO1: application to disease diagnostics in humans and TILLING and Eco-TILLING in plants. BMC Mol Biol 9:42CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Raghavan C, Naredo MEB, Wang H et al (2007) Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breed 19:87–101CrossRefGoogle Scholar
  8. 8.
    Uauy C, Paraiso F, Colasuonno P et al (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Bush SM, Krysan PJ (2010) iTILLING: a personalized approach to the identification of induced mutations in Arabidopsis. Plant Physiol 154:25–35CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Lee LS, Till BJ, Hill H, Huynh OA, Jankowicz-Cieslak J (2014) Mutation and mutation screening. Methods Mol Biol 1099:77–95CrossRefPubMedGoogle Scholar
  11. 11.
    Huang P, Zhu Z, Lin S, Zhang B (2012) Reverse genetic approaches in zebrafish. J Genet Genomics 39:421–433CrossRefPubMedGoogle Scholar
  12. 12.
    Dong C, Vincent K, Sharp P (2009) Simultaneous mutation detection of three homoeologous genes in wheat by High Resolution Melting analysis and Mutation Surveyor. BMC Plant Biol 9:143CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Perry JA, Wang TL, Welham TJ et al (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Ishikawa T, Kamei Y, Otozai S et al (2010) High-resolution melting curve analysis for rapid detection of mutations in a Medaka TILLING library. BMC Mol Biol 11:70CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Rigola D, van Oeveren J, Janssen A et al (2009) High-throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS One 4:e4761CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Tsai H, Missirian V, Ngo K et al (2013) Production of a high efficiency TILLING population through polyploidization. Plant Physiol 161:1604CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Tsai H, Howell T, Nitcher R et al (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156:1257–1268CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Kettleborough RN, Bruijn E, Eeden F, Cuppen E, Stemple DL (2011) High-throughput target-selected gene inactivation in zebrafish. Methods Cell Biol 104:121–127CrossRefPubMedGoogle Scholar
  19. 19.
    Gilchrist EJ, Sidebottom CH, Koh CS, Macinnes T, Sharpe AG, Haughn GW (2013) A mutant Brassica napus (canola) population for the identification of new genetic diversity via TILLING and next generation sequencing. PLoS One 8:e84303CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Zhu Q, Smith SM, Ayele M et al (2012) High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis. Genetics 192:819–829CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Hay FR, Thavong P, Taridno P, Timple S (2012) Evaluation of zeolite seed ‘Drying Beads®’ for drying rice seeds to low moisture content prior to long-term storage. Seed Sci Technol 40:374–395CrossRefGoogle Scholar
  22. 22.
    Xin Z, Chen J (2012) A high throughput DNA extraction method with high yield and quality. Plant Methods 8:26CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Zipper H, Brunner H, Bernhagen J, Vitzthum F (2004) Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res 32:e103CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Leggate J, Allain R, Isaac L, Blais BW (2006) Microplate fluorescence assay for the quantification of double stranded DNA using SYBR Green I dye. Biotechnol Lett 28:1587–1594CrossRefPubMedGoogle Scholar
  25. 25.
    Till BJ, Reynolds SH, Greene EA et al (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Missirian V, Comai L, Filkov V (2011) Statistical mutation calling from sequenced overlapping DNA pools in TILLING experiments. BMC Bioinform 12:287CrossRefGoogle Scholar
  27. 27.
    Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740PubMedCentralPubMedGoogle Scholar
  28. 28.
    Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40:W452–W457CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  30. 30.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Henry IM, Nagalakshmi U, Lieberman MC et al (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26:1382–1397CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410CrossRefPubMedGoogle Scholar
  34. 34.
    Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392CrossRefPubMedGoogle Scholar
  35. 35.
    Hollants S, Redeker EJ, Matthijs G (2012) Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin Chem 58:717–724CrossRefPubMedGoogle Scholar
  36. 36.
    Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, Childs KL, Davidson RM, Lin H, Quesada-Ocampo L, Vaillancourt B, Sakai H, Lee SS, Kim J, Numa H, Itoh T, Buell CR, Matsumoto T (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4CrossRefPubMedGoogle Scholar
  37. 37.
    Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–974PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Helen Tsai
    • 1
  • Kathie Ngo
    • 1
  • Meric Lieberman
    • 1
  • Victor Missirian
    • 1
  • Luca Comai
    • 1
    Email author
  1. 1.Department of Plant Biology and Genome CenterUniversity of California at DavisDavisUSA

Personalised recommendations