Advertisement

QTL Mapping Using High-Throughput Sequencing

  • Tiffany M. Jamann
  • Peter J. Balint-Kurti
  • James B. Holland
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1284)

Abstract

Quantitative trait locus (QTL) mapping in plants dates to the 1980s (Stuber et al. Crop Sci 27: 639–648, 1987; Paterson et al. Nature 335: 721–726, 1988), but earlier studies were often hindered by the expense and time required to identify large numbers of polymorphic genetic markers that differentiated the parental genotypes and then to genotype them on large segregating mapping populations. High-throughput sequencing has provided an efficient means to discover single nucleotide polymorphisms (SNPs) that can then be assayed rapidly on large populations with array-based techniques (Gupta et al. Heredity 101: 5–18, 2008). Alternatively, high-throughput sequencing methods such as restriction site-associated DNA sequencing (RAD-Seq) (Davey et al. Nat Rev Genet 12: 499–510, 2011; Baird et al. PloS ONE 3: e3376, 2008) and genotyping-by-sequencing (GBS) (Elshire et al. PLoS One 6: 2011; Glaubitz et al. PLoS One 9: e90346, 2014) can be used to identify and genotype polymorphic markers directly.

Linkage disequilibrium (LD) between markers and causal variants is needed to detect QTL. The earliest QTL mapping methods used backcross and F2 generations of crosses between inbred lines, which have high levels of linkage disequilibrium (dependent entirely on the recombination frequency between chromosomal positions), to ensure that QTL would have sufficiently high linkage disequilibrium with one or more markers on sparse genetic linkage maps. The downside of this approach is that resolution of QTL positions is poor. The sequencing technology revolution, by facilitating genotyping of vastly more markers than was previously feasible, has allowed researchers to map QTL in situations of lower linkage disequilibrium, and consequently, at higher resolution.

We provide a review of methods to identify QTL with higher precision than was previously possible. We discuss modifications of the traditional biparental mapping population that provide higher resolution of QTL positions, QTL fine-mapping procedures, and genome-wide association studies, all of which are greatly facilitated by high-throughput sequencing methods. Each of these procedures has many variants, and consequently many details to consider; we focus our chapter on the consequences of practical decisions that researchers make when designing QTL mapping studies and when analyzing the resulting data. The ultimate goal of many of these studies is to resolve a QTL to its causal sequence variation.

Key words

Fine-mapping Map-based cloning Genome-wide association study 

References

  1. 1.
    McMullen MD (2003) Quantitative trait locus analysis as a gene discovery tool. In: Grotewold E (ed) Methods in molecular biology, vol 236, Plant functional genomics: methods and protocols. Humana Press, Totowa, NJ, pp 141–154Google Scholar
  2. 2.
    Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18CrossRefPubMedGoogle Scholar
  3. 3.
    Marchini J, Howie B (2010) Genotype imputation for genome-wide association studies. Nat Rev Genet 11:499–511CrossRefPubMedGoogle Scholar
  4. 4.
    Kim S, Misra A (2007) SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng 9:289–320CrossRefPubMedGoogle Scholar
  5. 5.
    Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551CrossRefPubMedGoogle Scholar
  6. 6.
    Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510CrossRefPubMedGoogle Scholar
  7. 7.
    De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Resour 12:1058–1067Google Scholar
  8. 8.
    Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species. PLoS One 6:e19379CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: A high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9:e1003215CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Ganal MW, Wieseke R, Luerssen H, Durstewitz G, Graner E-M, Plieske J, Polley A (2014) High-throughput SNP profiling of genetic resources in crop plants using genotyping arrays. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, New York, pp 113–130CrossRefGoogle Scholar
  13. 13.
    Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods 3:31–33CrossRefPubMedGoogle Scholar
  14. 14.
    Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R (2005) Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 15:1496–1502CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Akey JM, Zhang K, Xiong M, Jin L (2003) The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol Biol Evol 20:232–242CrossRefPubMedGoogle Scholar
  16. 16.
    He C, Holme J, Anthony J (2014) SNP genotyping: the KASP assay. Methods Mol Biol 1145:75–86CrossRefPubMedGoogle Scholar
  17. 17.
    Schleinitz D, Distefano JK, Kovacs P (2011) Targeted SNP genotyping using the TaqMan(R) assay. Methods Mol Biol 700:77–87CrossRefPubMedGoogle Scholar
  18. 18.
    Jurinke C, van den Boom D, Cantor C, Köster H (2002) The use of MassARRAY technology for high throughput genotyping. In: Hoheisel J (ed) Chip technology. Springer, New York, pp 57–74CrossRefGoogle Scholar
  19. 19.
    Gabriel S, Ziaugra L, Tabbaa D (2001) SNP genotyping using the sequenom MassARRAY iPLEX platform. Current Protocols in Human Genetics. John Wiley & Sons, Inc., InGoogle Scholar
  20. 20.
    Wijnen CL, Keurentjes JJB (2014) Genetic resources for quantitative trait analysis: novelty and efficiency in design from an Arabidopsis perspective. Curr Opin Plant Biol 18:103–109CrossRefPubMedGoogle Scholar
  21. 21.
    Burr B, Burr FA, Thompson KH, Albertson MC, Stuber CW (1988) Gene mapping with recombinant inbreds in maize. Genetics 118:519–526PubMedCentralPubMedGoogle Scholar
  22. 22.
    Schatzki J, Ecke W, Becker H, Möllers C (2014) Mapping of QTL for the seed storage proteins cruciferin and napin in a winter oilseed rape doubled haploid population and their inheritance in relation to other seed traits. Theor Appl Genet 127:1213–1222CrossRefPubMedGoogle Scholar
  23. 23.
    Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 X Mo17 (IBM) population. Plant Mol Biol 48:453–461CrossRefPubMedGoogle Scholar
  24. 24.
    Balint-Kurti PJ, Zwonitzer JC, Wisser RJ, Carson ML, Oropeza-Rosas MA, Holland JB, Szalma SJ (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176:645–657CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Balint-Kurti PJ, Wisser R, Zwonitzer JC (2008) Use of an advanced intercross line population for precise mapping of quantitative trait loci for gray leaf spot resistance in maize. Crop Sci 48:1696–1704CrossRefGoogle Scholar
  26. 26.
    Huang Y-F, Madur D, Combes V, Ky CL, Coubriche D, Jamin P, Jouanne S, Dumas F, Bouty E, Bertin P, Charcosset A, Moreau L (2010) The genetic architecture of grain yield and related traits in Zea maize L. revealed by comparing intermated and conventional populations. Genetics 186:395–404CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Balasubramanian S, Schwartz C, Singh A, Warthmann N, Kim MC, Maloof JN, Loudet O, Trainer GT, Dabi T, Borevitz JO, Chory J, Weigel D (2009) QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One 4:e4318CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Wang S, Basten CJ, Zeng Z-B (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, http://statgen.ncsu.edu/qtlcart/WQTLCart.htmGoogle Scholar
  29. 29.
    Broman K, Sen Ś (2009) A guide to QTL mapping with R/qtl. Springer, DordrechtCrossRefGoogle Scholar
  30. 30.
    Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  32. 32.
    Winkler CR, Jensen NM, Cooper M, Podlich DW, Smith OS (2003) On the determination of recombination rates in intermated recombinant inbred populations. Genetics 164:741–745PubMedCentralPubMedGoogle Scholar
  33. 33.
    Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  34. 34.
    Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10:826–839CrossRefPubMedGoogle Scholar
  36. 36.
    Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C-W, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Redoña E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice (N Y) 6:11Google Scholar
  37. 37.
    Huang BE, George AW (2011) R/mpMap: a computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 27:727–729CrossRefPubMedGoogle Scholar
  38. 38.
    Verhoeven KJF, Jannink JL, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149CrossRefPubMedGoogle Scholar
  39. 39.
    Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–812CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    McMullen MD, Kresovich S, Sanchez Villeda H, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740CrossRefPubMedGoogle Scholar
  41. 41.
    Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224CrossRefPubMedGoogle Scholar
  42. 42.
    Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161CrossRefPubMedGoogle Scholar
  43. 43.
    Wu XL, Jannink JL (2004) Optimal sampling of a population to determine QTL location, variance, and allelic number. Theor Appl Genet 108:1434–1442CrossRefPubMedGoogle Scholar
  44. 44.
    Jannink J-L, Jansen R (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454PubMedCentralPubMedGoogle Scholar
  45. 45.
    Bardol N, Ventelon M, Mangin B, Jasson S, Loywick V, Couton F, Derue C, Blanchard P, Charcosset A, Moreau L (2013) Combined linkage and linkage disequilibrium QTL mapping in multiple families of maize (Zea mays L.) line crosses highlights complementarities between models based on parental haplotype and single locus polymorphism. Theor Appl Genet 126:2717–2736CrossRefPubMedGoogle Scholar
  46. 46.
    Jansen RC, Jannink J-L, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834CrossRefGoogle Scholar
  47. 47.
    Yu J, Holland JB, McMullen M, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Tian F, Bradbury PJ, Brown PJ, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162CrossRefPubMedGoogle Scholar
  49. 49.
    Kump KL, Bradbury PJ, Buckler ES, Belcher AR, Oropeza-Rosas M, Wisser RJ, Zwonitzer JC, Kresovich S, McMullen MD, Ware D, Balint-Kurti PJ, Holland JB (2011) Genome-wide association study of quantitative resistance to Southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–169CrossRefPubMedGoogle Scholar
  50. 50.
    Rockman MV, Kruglyak L (2008) Breeding designs for recombinant inbred advanced intercross lines. Genetics 179:1069–1078CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Williams CG (1997) QTL mapping in outbred pedigrees. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, FL, pp 81–94CrossRefGoogle Scholar
  52. 52.
    Liu S-C, Lin Y-R, Irvine JE, Paterson AH (2007) Mapping QTLs in autopolyploids. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, CL, pp 95–102Google Scholar
  53. 53.
    Robins JG, Luth D, Campbell TA, Bauchan GR, He C, Viands DR, Hansen JL, Brummer EC (2007) Genetic mapping of biomass production in tetraploid alfalfa. Crop Sci 47Google Scholar
  54. 54.
    Hackett CA, Luo ZW (2003) TetraploidMap: Construction of a linkage map in autotetraploid species. J Hered 94:358–359CrossRefPubMedGoogle Scholar
  55. 55.
    Van Ooijen JW (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Wageningen, Netherlands Kyazma BVGoogle Scholar
  56. 56.
    Patterson HD, Williams ER (1976) A new class of resolvable incomplete block designs. Biometrika 63:83–92CrossRefGoogle Scholar
  57. 57.
    Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381–393CrossRefGoogle Scholar
  58. 58.
    Hung HY, Browne C, Guill K, Coles N, Eller M, Garcia A, Lepak N, Melia-Hancock S, Oropeza-Rosas M, Salvo S, Upadyayula N, Buckler ES, Flint-Garcia S, McMullen MD, Rocheford TR, Holland JB (2012) The relationship between parental genetic or phenotypic divergence and progeny variation in the maize Nested Association Mapping population. Heredity 108:490–499CrossRefPubMedCentralPubMedGoogle Scholar
  59. 59.
    Moehring J, Williams ER, Piepho H-P (2014) Efficiency of augmented p-rep designs in multi-environmental trials. Theor Appl Genet 127:1049–1060CrossRefPubMedGoogle Scholar
  60. 60.
    Mendiburu F (2014) Package agricolae: statistical procedures for agricultural researchGoogle Scholar
  61. 61.
    Zeng Z-B, Kao C-H, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289CrossRefPubMedGoogle Scholar
  62. 62.
    Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  63. 63.
    Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88CrossRefPubMedGoogle Scholar
  64. 64.
    Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the α subunit of protein kinase CK2. Proc Natl Acad Sci U S A 98:7922–7927CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483CrossRefPubMedCentralPubMedGoogle Scholar
  66. 66.
    Alpert K, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A 93:15503–15507CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. TAG Theor Appl Genet 91:994–1000Google Scholar
  68. 68.
    Johnson EB, Haggard JE, St Clair DA (2012) Fractionation, stability, and isolate-specificity of QTL for resistance to Phytophthora infestans in cultivated tomato (Solanum lycopersicum). G3 (Bethesda) 2:1145–1159CrossRefGoogle Scholar
  69. 69.
    Studer AJ, Doebley JF (2011) Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188:673–681CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2-alpha gene in tomato. Genetics 120:579–585PubMedCentralPubMedGoogle Scholar
  71. 71.
    Tuinstra MR, Ejeta G, Goldsbrough PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95:1005–1011CrossRefGoogle Scholar
  72. 72.
    Durrett RT, Chen K-Y, Tanksley SD (2002) A simple formula useful for positional cloning. Genetics 160:353–355PubMedCentralPubMedGoogle Scholar
  73. 73.
    Gao S, Martinez C, Skinner D, Krivanek A, Crouch J, Xu Y (2008) Development of a seed DNA-based genotyping system for marker-assisted selection in maize. Mol Breeding 22:477–494CrossRefGoogle Scholar
  74. 74.
    Meru G, McDowell D, Waters V, Seibel A, Davis J, McGregor C (2013) A non-destructive genotyping system from a single seed for marker-assisted selection in watermelon. Genet Mol Res 12:702–709CrossRefPubMedGoogle Scholar
  75. 75.
    Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WTB, Flavell AJ, Marshall D (2010) Flapjack—graphical genotype visualization. Bioinformatics 26:3133–3134CrossRefPubMedCentralPubMedGoogle Scholar
  76. 76.
    Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742PubMedCentralPubMedGoogle Scholar
  77. 77.
    Kump KL, Holland JB, Jung MT, Wolters P, Balint-Kurti PJ (2010) Joint analysis of near-isogenic and recombinant inbred line populations yields precise positional estimates for quantitative trait loci. Plant Genome US 3:142–153CrossRefGoogle Scholar
  78. 78.
    Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang ZW, Costich DE, Buckler ES (2009) Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedCentralPubMedGoogle Scholar
  79. 79.
    Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13:85–96Google Scholar
  80. 80.
    Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064CrossRefPubMedGoogle Scholar
  81. 81.
    Yang XH, Yan JB, Shah T, Warburton ML, Li Q, Li L, Gao YF, Chai YC, Fu ZY, Zhou Y, Xu ST, Bai GH, Meng YJ, Zheng YP, Li JS (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431CrossRefPubMedGoogle Scholar
  82. 82.
    Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913CrossRefPubMedCentralPubMedGoogle Scholar
  83. 83.
    Barrett JC, Cardon LR (2006) Evaluating coverage of genome-wide association studies. Nat Genet 38:659–662CrossRefPubMedGoogle Scholar
  84. 84.
    Flint-Garcia SA, Thornsberry JM, Buckler ESI (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Physiol Plant Mol Biol 54:357–374CrossRefGoogle Scholar
  85. 85.
    Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet 126:133–141CrossRefPubMedGoogle Scholar
  86. 86.
    Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2:e1367CrossRefPubMedCentralPubMedGoogle Scholar
  87. 87.
    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909CrossRefPubMedGoogle Scholar
  88. 88.
    Zila CT, Samayoa LF, Santiago R, Butron A, Holland JB (2013) A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3 (Bethesda) 3:2095–2104CrossRefGoogle Scholar
  89. 89.
    VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423CrossRefPubMedGoogle Scholar
  90. 90.
    Wimmer V, Albrecht T, Auinger H-J, Schön C-C (2012) Synbreed: A framework for the analysis of genomic prediction data using R. Bioinformatics 28:2086–2087CrossRefPubMedGoogle Scholar
  91. 91.
    Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink J-L, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 (Bethesda) 2:1427–1436CrossRefGoogle Scholar
  92. 92.
    Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723CrossRefPubMedCentralPubMedGoogle Scholar
  93. 93.
    Zhang ZW, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu JM, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–362CrossRefPubMedCentralPubMedGoogle Scholar
  94. 94.
    Shin J-H, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Software 16Google Scholar
  95. 95.
    Frey TJ, Weldekidan T, Colbert T, Wolters PJCC, Hawk JA (2011) Fitness evaluation of Rcg1, a locus that confers resistance to Colletotrichum graminicola (Ces.) GW Wils. using near-isogenic maize hybrids. Crop Sci 51:1551–1563CrossRefGoogle Scholar
  96. 96.
    Ahern KR, Deewatthanawong P, Schares J, Muszynski M, Weeks R, Vollbrecht E, Duvick J, Brendel VP, Brutnell TP (2009) Regional mutagenesis using Dissociation in maize. Methods 49:248–254CrossRefPubMedGoogle Scholar
  97. 97.
    Settles AM, Holding DR, Tan BC, Latshaw SP, Liu J, Suzuki M, Li L, O’Brien BA, Fajardo DS, Wroclawska E (2007) Sequence-indexed mutations in maize using the UniformMu transposon-tagging population. BMC Genomics 8:116CrossRefPubMedCentralPubMedGoogle Scholar
  98. 98.
    Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19CrossRefPubMedCentralPubMedGoogle Scholar
  99. 99.
    McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genomics 9:111–117CrossRefPubMedGoogle Scholar
  100. 100.
    Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao G-H, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381CrossRefPubMedCentralPubMedGoogle Scholar
  101. 101.
    Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet. doi: 10.1038/ng.942 PubMedCentralPubMedGoogle Scholar
  102. 102.
    Yang Q, Li Z, Li W, Ku L, Wang C, Ye J, Li K, Yang N, Li Y, Zhong T (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci U S A 110:16969–16974CrossRefPubMedCentralPubMedGoogle Scholar
  103. 103.
    Beavis, W.D. (1998) QTL analyses: Power, precision, and accuracy. In, Paterson, A.H., Ed. Molecular Dissection of Complex Traits. CRC Press, Boca Raton, FL, p. 145–162Google Scholar
  104. 104.
    Piepho H-P, Gauch HG Jr (2001) Marker pair selection for mapping quantitative trait loci. Genetics 157:433–444PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tiffany M. Jamann
    • 1
  • Peter J. Balint-Kurti
    • 2
  • James B. Holland
    • 3
  1. 1.Department of Crop ScienceNorth Carolina State UniversityRaleighUSA
  2. 2.USDA-ARS Plant Science Research Unit, Department of Plant PathologyNorth Carolina State UniversityRaleighUSA
  3. 3.USDA-ARS Plant Science Research Unit, Department of Crop ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations