Coronaviruses pp 135-152 | Cite as

Engineering Infectious cDNAs of Coronavirus as Bacterial Artificial Chromosomes

  • Fernando Almazán
  • Silvia Márquez-Jurado
  • Aitor Nogales
  • Luis Enjuanes
Part of the Methods in Molecular Biology book series (MIMB, volume 1282)


The large size of the coronavirus (CoV) genome (around 30 kb) and the instability in bacteria of plasmids carrying CoV replicase sequences represent serious restrictions for the development of CoV infectious clones using reverse genetic systems similar to those used for smaller positive sense RNA viruses. To overcome these problems, several approaches have been established in the last 13 years. Here we describe the engineering of CoV full-length cDNA clones as bacterial artificial chromosomes (BACs), using the Middle East respiratory syndrome CoV (MERS-CoV) as a model.

Key words

Coronavirus MERS Reverse genetics Infectious clones Bacterial artificial chromosomes 



This work was supported by grants from the Ministry of Science and Innovation of Spain (MCINN) (BIO2010-16705), the European Community’s Seventh Framework Programme (FP7/2007–2013) under the project “EMPERIE” (HEALTH-F3-2009-223498), and the National Institute of Health (NIH) of the USA (2P01AI060699-06A1). S. M. received a predoctoral fellowship from the National Institute of Health (ISCIII) of Spain.


  1. 1.
    Masters PS (2006) The molecular biology of coronaviruses. Adv Virus Res 66:193–292CrossRefPubMedGoogle Scholar
  2. 2.
    Lai MMC, Perlman S, Anderson L (2007) Coronaviridae. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, vol 1, 5th edn. Lippincott Williams and Wilkins, Philadelphia, pp 1305–1335Google Scholar
  3. 3.
    Stadler K, Masignani V, Eickmann M et al (2003) SARS-beginning to understand a new virus. Nat Rev Microbiol 1:209–218CrossRefPubMedGoogle Scholar
  4. 4.
    Zaki AM, van Boheemen S, Bestebroer TM et al (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367:1814–1820CrossRefPubMedGoogle Scholar
  5. 5.
    Almazán F, González JM, Pénzes Z et al (2000) Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci U S A 97:5516–5521CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Yount B, Curtis KM, Baric RS (2000) Strategy for systematic assembly of large RNA and DNA genomes: transmissible gastroenteritis virus model. J Virol 74:10600–10611CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Thiel V, Herold J, Schelle B et al (2001) Infectious RNA transcribed in vitro from a cDNA copy of the human coronavirus genome cloned in vaccinia virus. J Gen Virol 82:1273–1281PubMedGoogle Scholar
  8. 8.
    Casais R, Thiel V, Siddell SG et al (2001) Reverse genetics system for the avian coronavirus infectious bronchitis virus. J Virol 75: 12359–12369CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    van Boheemen S, de Graaf M, Lauber C et al (2012) Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio 3, e00473-12Google Scholar
  10. 10.
    Wang K, Boysen C, Shizuya H et al (1997) Complete nucleotide sequence of two generations of a bacterial artificial chromosome cloning vector. Biotechniques 23:992–994PubMedGoogle Scholar
  11. 11.
    Shizuya H, Birren B, Kim UJ et al (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89:8794–8797CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Dubensky TW, Driver DA, Polo JM et al (1996) Sindbis virus DNA-based expression vectors: utility for in vitro and in vivo gene transfer. J Virol 70:508–519PubMedCentralPubMedGoogle Scholar
  13. 13.
    Bálint A, Farsang A, Zádori Z et al (2012) Molecular characterization of feline infectious peritonitis virus strain DF-2 and studies of the role of ORF3abc in viral cell tropism. J Virol 86:6258–6267CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    St-Jean JR, Desforges M, Almazán F et al (2006) Recovery of a neurovirulent human coronavirus OC43 from an infectious cDNA clone. J Virol 80:3670–3674CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Almazán F, DeDiego ML, Galán C et al (2006) Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol 80:10900–10906CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Almazán F, DeDiego ML, Sola I et al (2013) Engineering a replication-competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. mBio 4, e00650-00613Google Scholar
  17. 17.
    Zhang Y, Buchholz F, Muyrers JPP et al (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123–128CrossRefPubMedGoogle Scholar
  18. 18.
    Lee EC, Yu D, Martinez de Velasco J et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56–65CrossRefPubMedGoogle Scholar
  19. 19.
    Jamsai D, Orford M, Nefedov M et al (2003) Targeted modification of a human beta-globin locus BAC clone using GET recombination and an I-SceI counterselection cassette. Genomics 82:68–77CrossRefPubMedGoogle Scholar
  20. 20.
    Tischer BK, von Einem J, Kaufer B et al (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fernando Almazán
    • 1
  • Silvia Márquez-Jurado
    • 1
  • Aitor Nogales
    • 2
  • Luis Enjuanes
    • 1
  1. 1.Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC)Campus Universidad Autónoma de MadridMadridSpain
  2. 2.Department of Microbiology and ImmunologyUniversity of RochesterRochesterUSA

Personalised recommendations