Skip to main content

Confocal Microscopy for Intracellular Co-localization of Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Confocal laser scanning microscopy is the best method to visualize intracellular co-localization of proteins in intact cells. Because of the point scan/pinhole detection system, light contribution from the neighborhood of the scanning spot in the specimen can be eliminated, allowing high Z-axis resolution. Fluorescence detection by sensitive photomultiplier tubes allows the usage of filters with a narrow bandpath, resulting in minimal cross-talk (overlap) between two spectra. This is particularly important in demonstrating co-localization of proteins with multicolor labeling. Here, the methods outlining the detection of transiently expressed tagged proteins and the detection of endogenous proteins are described. Ideally, the intracellular co-localization of two endogenous proteins should be demonstrated. However, when antibodies raised against the protein of interest are unavailable for immunofluorescence or the available cell lines do not express the protein of interest sufficiently enough for immunofluorescence, an alternative method is to transfect cells with expression plasmids that encode tagged proteins and stain the cells with anti-tag antibodies. However, it should be noted that the tagging of proteins of interest or their overexpression could potentially alter the intracellular localization or the function of the target protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Abe Y, Oka A, Mizuguchi M, Igarashi T, Ishikawa S, Aburatani H, Yokoyama S, Asahara H, Nagao K, Yamada M, Miyashita T (2009) EYA4, deleted in a case with middle interhemispheric variant of holoprosencephaly, interacts with SIX3 both physically and functionally. Hum Mutat 30:E946–E955

    Article  PubMed  Google Scholar 

  2. Yamagata K, Suetsugu R, Wakayama T (2009) Long-term, six-dimensional live-cell imaging for the mouse preimplantation embryo that does not affect full-term development. J Reprod Dev 55:343–350

    Article  PubMed  Google Scholar 

  3. Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  4. Wessendorf MW, Brelje TC (1992) Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas red, and cyanine 3.18. Histochemistry 98:81–85

    Article  CAS  PubMed  Google Scholar 

  5. Kita K, Oya H, Gennis RB, Ackrell BC, Kasahara M (1990) Human complex II (succinate-ubiquinone oxidoreductase): cDNA cloning of iron sulfur (Ip) subunit of liver mitochondria. Biochem Biophys Res Commun 166:101–108

    Article  CAS  PubMed  Google Scholar 

  6. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736

    Article  CAS  PubMed  Google Scholar 

  7. Kiefer MC, Brauer MJ, Powers VC, Wu JJ, Umansky SR, Tomei LD, Barr PJ (1995) Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374:736–739

    Article  CAS  PubMed  Google Scholar 

  8. Miyashita T, Okamura-Oho Y, Mito Y, Nagafuchi S, Yamada M (1997) Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis. J Biol Chem 272:29238–29242

    Article  CAS  PubMed  Google Scholar 

  9. Nagafuchi S, Yanagisawa H, Ohsaki E, Shirayama T, Tadokoro K, Inoue T, Yamada M (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8:177–182

    Article  CAS  PubMed  Google Scholar 

  10. Miyashita T, Nagao K, Ohmi K, Yanagisawa H, Okamura-Oho Y, Yamada M (1998) Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem Biophys Res Commun 249:96–102

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, Kreis TE, Warren G (1995) Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol 131:1715–1726

    Article  CAS  PubMed  Google Scholar 

  12. Dyck JA, Maul GG, Miller WHJ, Chen JD, Kakizuka A, Evans RM (1994) A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76:333–343

    Article  CAS  PubMed  Google Scholar 

  13. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994) Retinoic acid regulates aberrant nuclear localization of PML-RAR alpha in acute promyelocytic leukemia cells. Cell 76:345–356

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Yuko Ohtsuka and Mami U for their technical assistance. I am also grateful to Drs. Yoshiaki Shikama and Yuko Okamura-Oho for their valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Miyashita M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Miyashita, T. (2015). Confocal Microscopy for Intracellular Co-localization of Proteins. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_34

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics