Skip to main content

Circular Dichroism (CD) Analyses of Protein-Protein Interactions

  • Protocol
Protein-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1278))

Abstract

Circular dichroism (CD) spectroscopy is a useful technique for studying protein-protein interactions in solution. CD in the far ultraviolet region (178–260 nm) arises from the amides of the protein backbone and is sensitive to the conformation of the protein. Thus, CD can determine whether there are changes in the conformation of proteins when they interact. Changes in the conformation of the protein complexes as a function of temperature or added denaturants, compared to the individual proteins, can be used to determine binding constants. CD bands in the near ultraviolet (350–260 nm) and visible regions arise from aromatic amino acid side chains and prosthetic groups. There are often changes in these regions when proteins bind to each other. Because CD is a quantitative technique, these changes are directly proportional to the amount of the protein–protein complexes formed and thus also can be used to estimate binding constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler AJ, Greenfield NJ, Fasman GD (1973) Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol 27:675–735

    Article  CAS  PubMed  Google Scholar 

  2. Johnson WC Jr (1988) Secondary structure of proteins through circular dichroism spectroscopy. Annu Rev Biophys Biophys Chem 17:145–166

    Article  CAS  PubMed  Google Scholar 

  3. Johnson WC Jr (1990) Protein secondary structure and circular dichroism: a practical guide. Proteins 7:205–214

    Article  CAS  PubMed  Google Scholar 

  4. Sreerama S, Woody RW (1995) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383(Part D):318–351

    Google Scholar 

  5. Greenfield NJ (1996) Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Anal Biochem 235:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Greenfield NJ (2006) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1:2876–2890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Greenfield NJ (2006) Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 1:2527–2535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Greenfield NJ (2006) Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat Protoc 1:2733–2741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Greenfield N, Fasman GD (1969) Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108–4116

    Article  CAS  PubMed  Google Scholar 

  10. Joseph C, Stier G, O'Brien R, Politou AS, Atkinson RA, Bianco A, Ladbury JE, Martin SR, Pastore A (2001) A structural characterization of the interactions between titin Z- repeats and the alpha-actinin C-terminal domain. Biochemistry 40:4957–4965

    Article  CAS  PubMed  Google Scholar 

  11. Bothner B, Lewis WS, DiGiammarino EL, Weber JD, Bothner SJ, Kriwacki RW (2001) Defining the molecular basis of Arf and Hdm2 interactions. J Mol Biol 314:263–277

    Article  CAS  PubMed  Google Scholar 

  12. Reed J, Kinzel V (1984) Near- and far-ultraviolet circular dichroism of the catalytic subunit of adenosine cyclic 5′-monophosphate dependent protein kinase. Biochemistry 23:1357–1362

    Article  CAS  PubMed  Google Scholar 

  13. Michel B, Proudfoot AE, Wallace CJ, Bosshard HR (1989) The cytochrome c oxidase-cytochrome c complex: spectroscopic analysis of conformational changes in the protein–protein interaction domain. Biochemistry 28:456–462

    Article  CAS  PubMed  Google Scholar 

  14. Hennessey JP Jr, Johnson WC Jr (1981) Information content in the circular dichroism of proteins. Biochemistry 20:1085–1094

    Article  CAS  PubMed  Google Scholar 

  15. Manavalan P, Johnson WC Jr (1987) Variable selection method improves the prediction of protein secondary structure from circular dichroism spectra. Anal Biochem 167:76–85

    Article  CAS  PubMed  Google Scholar 

  16. Brahms S, Brahms J (1980) Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J Mol Biol 138:149–178

    Article  CAS  PubMed  Google Scholar 

  17. Saxena VP, Wetlaufer DB (1971) A new basis for interpreting the circular dichroic spectra of proteins. Proc Natl Acad Sci U S A 68:969–972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chang CT, Wu C-SC, Yang JT (1978) Circular dichroic analysis of protein conformation: inclusion of β-turns. Anal Biochem 91:13–31

    Article  CAS  PubMed  Google Scholar 

  19. Perczel A, Park K, Fasman GD (1992) Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: a practical guide. Anal Biochem 203:83–93

    Article  CAS  PubMed  Google Scholar 

  20. Perczel A, Park K, Fasman GD (1992) Deconvolution of the circular dichroism spectra of proteins: the circular dichroism spectra of the antiparallel beta-sheet in proteins. Proteins 13:57–69

    Article  CAS  PubMed  Google Scholar 

  21. Greenfield NJ, Fowler VM (2002) Tropomyosin requires an intact N-terminal coiled coil to interact with tropomodulin. Biophys J 82:2580–2591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Greenfield NJ, DeGregori H (1993) Conformational intermediates in the folding of a coiled-coil model peptide of the N-terminus of tropomyosin and αα-tropomyosin. Protein Sci 2:1263–1273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Greenfield NJ, Kostyukova A, Hitchcock-DeGregori SE (2005) Structure and tropomyosin binding properties of the N-terminal capping domain of tropomodulin 1. Biophys J 88:372–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Meshcheryakov VA, Krieger I, Kostyukova AS, Samatey FA (2011) Structure of a tropomyosin N-terminal fragment at 0.98 Å resolution. Acta Crystallogr D Biol Crystallogr 67:822–825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Greenfield NJ, Huang YJ, Palm T, Swapna GV, Monleon D, Montelione GT, Hitchcock-DeGregori SE (2001) Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. J Mol Biol 312:833–847

    Article  CAS  PubMed  Google Scholar 

  26. Provencher SW, Glockner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  CAS  PubMed  Google Scholar 

  27. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287:252–260

    Article  CAS  PubMed  Google Scholar 

  28. Sreerama N, Woody RW (1994) Poly(pro)II helices in globular proteins: identification and circular dichroic analysis. Biochemistry 33:10022–10025

    Article  CAS  PubMed  Google Scholar 

  29. Sreerama N, Woody RW (1994) Protein secondary structure from circular dichroism spectroscopy. Combining variable selection principle and cluster analysis with neural network, ridge regression and self-consistent methods. J Mol Biol 242:497–507

    CAS  PubMed  Google Scholar 

  30. Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44

    Article  CAS  PubMed  Google Scholar 

  31. Sreerama N, Woody RW (2000) Estimation of protein secondary structure from CD spectra: comparison of CONTIN, SELCON and CDSSTR methods with an expanded reference set. Anal Biochem 282:252–260

    Article  Google Scholar 

  32. Johnson WC (1999) Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 35:307–312

    Article  CAS  PubMed  Google Scholar 

  33. Bohm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  CAS  PubMed  Google Scholar 

  34. Andrade MA, Chacon P, Merelo JJ, Moran F (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390

    Article  CAS  PubMed  Google Scholar 

  35. Perczel A, Hollosi M, Tusnady G, Fasman GD (1991) Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins. Protein Eng 4:669–679

    Article  CAS  PubMed  Google Scholar 

  36. Georgescu RE, Braswell EH, Zhu D, Tasayco ML (1999) Energetics of assembling an artificial heterodimer with an alpha/beta motif: cleaved versus uncleaved Escherichia coli thioredoxin. Biochemistry 38:13355–13366

    Article  CAS  PubMed  Google Scholar 

  37. Katti SK, LeMaster DM, Eklund H (1990) Crystal structure of thioredoxin from Escherichia coli at 1.68 A resolution. J Mol Biol 212:167–184

    Article  CAS  PubMed  Google Scholar 

  38. Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann NY Acad Sci 51:660–672

    Article  CAS  Google Scholar 

  39. Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 40:iv–vii

    Google Scholar 

  40. Engel G (1974) Estimation of binding parameters of enzyme-ligand complex from fluorometric data by a curve fitting procedure: seryl-tRNA synthetase-tRNA Ser complex. Anal Biochem 61:184–191

    Article  CAS  PubMed  Google Scholar 

  41. Honda S, Kobayashi N, Munekata E, Uedaira H (1999) Fragment reconstitution of a small protein: folding energetics of the reconstituted immunoglobulin binding domain B1 of streptococcal protein G. Biochemistry 38:1203–1213

    Article  CAS  PubMed  Google Scholar 

  42. Santoro MM, Bolen DW (1988) Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27:8063–8068

    Article  CAS  PubMed  Google Scholar 

  43. Marquardt DW (1963) An algorithm for the estimation of non-linear parameters. J Soc Indust Appl Math 11:431–441

    Article  Google Scholar 

  44. Holmgren A, Soderberg BO, Eklund H, Branden CI (1975) Three-dimensional structure of Escherichia coli thioredoxin-S2 to 2.8 A resolution. Proc Natl Acad Sci U S A 72:2305–2309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Jeng MF, Campbell AP, Begley T, Holmgren A, Case DA, Wright PE, Dyson HJ (1994) High-resolution solution structures of oxidized and reduced Escherichia coli thioredoxin. Structure 2:853–868

    Article  CAS  PubMed  Google Scholar 

  46. Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(51–5):29–32

    Google Scholar 

  47. Deléage G, Geourjon C (1993) An interactive graphic program for calculating the secondary structure content of proteins from circular dichroism spectrum. Comput Appl Biosci 9:197–199

    PubMed  Google Scholar 

  48. Unneberg P, Merelo JJ, Chacón P, Morán F, SOMCD (2001) Method for evaluating protein secondary structure from UV circular dichroism spectra. Proteins 42:460–470

    Article  CAS  PubMed  Google Scholar 

  49. Louis-Jeune C, Andrade MA, Perez-Iratxetal C (2012) Prediction of protein secondary structure from circular dichroism using theoretically derived spectra. Proteins 80:374–381

    Article  CAS  PubMed  Google Scholar 

  50. Wiedemann C, Bellstedt P, Görlach M (2013) CAPITO – a web server-based analysis and plotting tool for circular dichroism data. Bioinformatics 29:1750–1757

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma J. Greenfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Greenfield, N.J. (2015). Circular Dichroism (CD) Analyses of Protein-Protein Interactions. In: Meyerkord, C., Fu, H. (eds) Protein-Protein Interactions. Methods in Molecular Biology, vol 1278. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2425-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2425-7_15

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2424-0

  • Online ISBN: 978-1-4939-2425-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics