NF-kappa B pp 121-154 | Cite as

Systematic Detection of Noncanonical NF-κB Activation

Part of the Methods in Molecular Biology book series (MIMB, volume 1280)


In unstimulated cells, NF-κB dimers usually exist as latent complexes in the cytoplasm with the IκB (inhibitor of NF-κB) proteins or IκB-like protein p100, the precursor of NF-κB2 mature form p52. Accordingly, there are two major mechanisms leading to NF-κB activation: inducible degradation of IκBs and processing of p100 to generate p52 (selective degradation of the C-terminal IκB-like sequence of p100), which are termed the canonical and noncanonical NF-κB pathways, respectively. While activation of the canonical NF-κB pathway plays critical roles in a wide range of biological processes, the noncanonical NF-κB pathway has important but more restricted roles in both normal and pathological processes. Systematic detection of the noncanonical NF-κB pathway activation is very important for understanding the physiological role of this pathway in biological processes, and for the diagnosis, prevention, and treatment of related diseases. We describe here the methods we employ to detect noncanonical NF-κB activation in cells and tissues. These methods are immunoblotting, co-immunoprecipitation, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation (ChIP) analysis, and electrophoretic mobility shift assay (EMSA). Noncanonical NF-κB-induced gene expression changes can be determined by gene array analysis and quantitative real-time PCR.

Key words

NF-κB NF-κB2 p100 p52 NF-κB-inducing kinase Immunoblotting (IB) assay Immunoprecipitation (IP) assay Electrophoretic mobility shift assay (EMSA) Chromatin immunoprecipitation (ChIP) assay 


  1. 1.
    Xiao G, Fu J (2011) NF-kappaB and cancer: a paradigm of Yin-Yang. Am J Cancer Res 1(2):192–221PubMedCentralPubMedGoogle Scholar
  2. 2.
    Xiao G et al (2006) Alternative pathways of NF-kappaB activation: a double-edged sword in health and disease. Cytokine Growth Factor Rev 17(4):281–293CrossRefPubMedGoogle Scholar
  3. 3.
    Claudio E et al (2002) BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 3(10):958–965CrossRefPubMedGoogle Scholar
  4. 4.
    Coope HJ et al (2002) CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 21(20):5375–5385CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Dejardin E et al (2002) The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17(4):525–535CrossRefPubMedGoogle Scholar
  6. 6.
    Novack DV et al (2003) The IkappaB function of NF-kappaB2 p100 controls stimulated osteoclastogenesis. J Exp Med 198(5):771–781CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Saitoh T et al (2003) TWEAK induces NF-kappaB2 p100 processing and long lasting NF-kappaB activation. J Biol Chem 278(38):36005–36012CrossRefPubMedGoogle Scholar
  8. 8.
    Xiao G, Harhaj EW, Sun SC (2001) NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 7(2):401–409CrossRefPubMedGoogle Scholar
  9. 9.
    Qing G, Qu Z, Xiao G (2005) Stabilization of basally translated NF-kappaB-inducing kinase (NIK) protein functions as a molecular switch of processing of NF-kappaB2 p100. J Biol Chem 280(49):40578–40582CrossRefPubMedGoogle Scholar
  10. 10.
    Liao G et al (2004) Regulation of the NF-kappaB-inducing kinase by tumor necrosis factor receptor-associated factor 3-induced degradation. J Biol Chem 279(25):26243–26250CrossRefPubMedGoogle Scholar
  11. 11.
    Grech AP et al (2004) TRAF2 differentially regulates the canonical and noncanonical pathways of NF-kappaB activation in mature B cells. Immunity 21(5):629–642CrossRefPubMedGoogle Scholar
  12. 12.
    Senftleben U et al (2001) Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293(5534):1495–1499CrossRefPubMedGoogle Scholar
  13. 13.
    Vallabhapurapu S et al (2008) Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-kappaB signaling. Nat Immunol 9(12):1364–1370CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Zarnegar BJ et al (2008) Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 9(12):1371–1378CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Fong A, Sun SC (2002) Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. J Biol Chem 277(25):22111–22114CrossRefPubMedGoogle Scholar
  16. 16.
    Xiao G, Fong A, Sun SC (2004) Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. J Biol Chem 279(29):30099–30105CrossRefPubMedGoogle Scholar
  17. 17.
    Ling L, Cao Z, Goeddel DV (1998) NF-kappaB-inducing kinase activates IKK-alpha by phosphorylation of Ser-176. Proc Natl Acad Sci U S A 95(7):3792–3797CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Franzoso G et al (1998) Mice deficient in nuclear factor (NF)-kappa B/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J Exp Med 187(2):147–159CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Caamano JH et al (1998) Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med 187(2):185–196CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Yin L et al (2001) Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291(5511):2162–2165CrossRefPubMedGoogle Scholar
  21. 21.
    Shinkura R et al (1999) Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-kappa b-inducing kinase. Nat Genet 22(1):74–77CrossRefPubMedGoogle Scholar
  22. 22.
    Miyawaki S et al (1994) A new mutation, aly, that induces a generalized lack of lymph nodes accompanied by immunodeficiency in mice. Eur J Immunol 24(2):429–434CrossRefPubMedGoogle Scholar
  23. 23.
    Futterer A et al (1998) The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9(1):59–70CrossRefPubMedGoogle Scholar
  24. 24.
    Thompson JS et al (2001) BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 293(5537):2108–2111CrossRefPubMedGoogle Scholar
  25. 25.
    Shulga-Morskaya S et al (2004) B cell-activating factor belonging to the TNF family acts through separate receptors to support B cell survival and T cell-independent antibody formation. J Immunol 173(4):2331–2341CrossRefPubMedGoogle Scholar
  26. 26.
    Sasaki Y et al (2004) TNF family member B cell-activating factor (BAFF) receptor-dependent and -independent roles for BAFF in B cell physiology. J Immunol 173(4):2245–2252CrossRefPubMedGoogle Scholar
  27. 27.
    Kawabe T et al (1994) The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1(3):167–178CrossRefPubMedGoogle Scholar
  28. 28.
    Dougall WC et al (1999) RANK is essential for osteoclast and lymph node development. Genes Dev 13(18):2412–2424CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Ishikawa H et al (1997) Gastric hyperplasia and increased proliferative responses of lymphocytes in mice lacking the COOH-terminal ankyrin domain of NF-kappaB2. J Exp Med 186(7):999–1014CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Mackay F et al (1999) Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 190(11):1697–1710CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Khare SD et al (2000) Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc Natl Acad Sci U S A 97(7):3370–3375CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Moore CR et al (2012) Specific deletion of TRAF3 in B lymphocytes leads to B-lymphoma development in mice. Leukemia 26(5):1122–1127CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Rosebeck S et al (2011) Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-kappaB activation. Science 331(6016):468–472CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Rosebeck S, Lucas PC, McAllister-Lucas LM (2011) Protease activity of the API2-MALT1 fusion oncoprotein in MALT lymphoma development and treatment. Future Oncol 7(5):613–617CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Pham LV et al (2011) Constitutive BR3 receptor signaling in diffuse, large B-cell lymphomas stabilizes nuclear factor-kappaB-inducing kinase while activating both canonical and alternative nuclear factor-kappaB pathways. Blood 117(1):200–210CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Demchenko YN et al (2010) Classical and/or alternative NF-kappaB pathway activation in multiple myeloma. Blood 115(17):3541–3552CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Compagno M et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Keats JJ et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12(2):131–144CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Annunziata CM et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12(2):115–130CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Nagel I et al (2009) Biallelic inactivation of TRAF3 in a subset of B-cell lymphomas with interstitial del(14)(q24.1q32.33). Leukemia 23(11):2153–2155CrossRefPubMedGoogle Scholar
  41. 41.
    Braggio E et al (2009) Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom’s macroglobulinemia. Cancer Res 69(8):3579–3588CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Rayet B, Gelinas C (1999) Aberrant rel/nfkb genes and activity in human cancer. Oncogene 18(49):6938–6947CrossRefPubMedGoogle Scholar
  43. 43.
    Sun SC, Xiao G (2003) Deregulation of NF-kappaB and its upstream kinases in cancer. Cancer Metastasis Rev 22(4):405–422CrossRefPubMedGoogle Scholar
  44. 44.
    Qing G, Qu Z, Xiao G (2007) Endoproteolytic processing of C-terminally truncated NF-kappaB2 precursors at kappaB-containing promoters. Proc Natl Acad Sci U S A 104(13):5324–5329CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    Qu Z, Xiao G (2011) Human T-cell lymphotropic virus: a model of NF-kappaB-associated tumorigenesis. Viruses 3(6):714–749CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Xiao G, Sun SC (2000) Activation of IKKalpha and IKKbeta through their fusion with HTLV-I tax protein. Oncogene 19(45):5198–5203CrossRefPubMedGoogle Scholar
  47. 47.
    Xiao G et al (2001) Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 20(23):6805–6815CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Qu Z et al (2004) Tax deregulation of NF-kappaB2 p100 processing involves both beta-TrCP-dependent and -independent mechanisms. J Biol Chem 279(43):44563–44572CrossRefPubMedGoogle Scholar
  49. 49.
    Fu J et al (2011) The tumor suppressor gene WWOX links the canonical and noncanonical NF-kappaB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 117(5):1652–1661CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    de Oliveira DE, Ballon G, Cesarman E (2010) NF-kappaB signaling modulation by EBV and KSHV. Trends Microbiol 18(6):248–257CrossRefPubMedGoogle Scholar
  51. 51.
    Wu JT, Kral JG (2005) The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 123(1):158–169CrossRefPubMedGoogle Scholar
  52. 52.
    Storz P (2013) Targeting the alternative NF-kappaB pathway in pancreatic cancer: a new direction for therapy? Expert Rev Anticancer Ther 13(5):501–504CrossRefPubMedCentralPubMedGoogle Scholar
  53. 53.
    Ueda Y, Richmond A (2006) NF-kappaB activation in melanoma. Pigment Cell Res 19(2):112–124CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Groom J et al (2002) Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren’s syndrome. J Clin Invest 109(1):59–68CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Zhang J et al (2001) Cutting edge: a role for B lymphocyte stimulator in systemic lupus erythematosus. J Immunol 166(1):6–10CrossRefPubMedGoogle Scholar
  56. 56.
    Cheema GS et al (2001) Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum 44(6):1313–1319CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Microbiology and Molecular GeneticsUniversity of Pittsburgh, School of MedicinePittsburghUSA

Personalised recommendations