Abstract
NF-κB is an essential regulator of inflammation and is also required for normal immune development and homeostasis. The inducible activation of NF-κB by a wide range of immuno-receptors such as the toll-like receptors (TLR), Tumour Necrosis Factor receptor (TNFR), and antigen T cell and B cell receptors requires the ubiquitin-triggered proteasomal degradation of IκBα to promote the nuclear translocation and transcriptional activity of NF-κB dimers. More recently, an additional role for ubiquitination and proteasomal degradation in the control of NF-κB activity has been uncovered. In this case, it is the ubiquitination and proteasomal degradation of the NF-κB subunits that play a critical role in the termination of the NF-κB-dependent transcriptional response induced by receptor activation. The primary trigger of NF-κB ubiquitination is DNA binding by NF-κB dimers and is further controlled by specific phosphorylation events which regulate the interaction of NF-κB with the E3 ligase complex and the deubiquitinase enzyme USP7. It is the balance between ubiquitination and deubiquitination that shapes the NF-κB-mediated transcriptional response. This chapter describes methods for the analysis of NF-κB ubiquitination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hershko A (1983) Ubiquitin: roles in protein modification and breakdown. Cell 34:11–12
Komander D, Rape M (2012) The ubiquitin code. Annu Rev Biochem 81:203–229
Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70:503–533
Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14:10–21
Petroski MD, Deshaies RJ (2005) Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 6:9–20
Chen ZJ, Sun LJ (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol Cell 33:275–286
Adhikari A, Chen ZJ (2009) Diversity of polyubiquitin chains. Dev Cell 16:485–486
Chen J, Chen ZJ (2013) Regulation of NF-kappaB by ubiquitination. Curr Opin Immunol 25:4–12
Spencer E, Jiang J, Chen ZJ (1999) Signal-induced ubiquitination of IkappaBalpha by the F-box protein Slimb/beta-TrCP. Genes Dev 13:284–294
Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG (2007) Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J Biol Chem 282:4102–4112
Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22:245–257
Fong A, Sun SC (2002) Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100. J Biol Chem 277:22111–22114
Carmody RJ, Ruan Q, Palmer S, Hilliard B, Chen YH (2007) Negative regulation of toll-like receptor signaling by NF-kappaB p50 ubiquitination blockade. Science 317:675–678
Saccani S, Marazzi I, Beg AA, Natoli G (2004) Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor kappaB response. J Exp Med 200:107–113
Geng H, Wittwer T, Dittrich-Breiholz O, Kracht M, Schmitz ML (2009) Phosphorylation of NF-kappaB p65 at Ser468 controls its COMMD1-dependent ubiquitination and target gene-specific proteasomal elimination. EMBO Rep 10:381–386
Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-kappaB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12:1413–1426
Maine GN, Mao X, Komarck CM, Burstein E (2007) COMMD1 promotes the ubiquitination of NF-kappaB subunits through a cullin-containing ubiquitin ligase. EMBO J 26:436–447
Mao X, Gluck N, Li D, Maine GN, Li H, Zaidi IW, Repaka A, Mayo MW, Burstein E (2009) GCN5 is a required cofactor for a ubiquitin ligase that targets NF-kappaB/RelA. Genes Dev 23:849–861
Li H, Wittwer T, Weber A, Schneider H, Moreno R, Maine GN, Kracht M, Schmitz ML, Burstein E (2011) Regulation of NF-kappaB activity by competition between RelA acetylation and ubiquitination. Oncogene 31: 611–623
Colleran A, Collins PE, O’Carroll C, Ahmed A, Mao X, McManus B, Kiely PA, Burstein E, Carmody RJ (2013) Deubiquitination of NF-kappaB by Ubiquitin-Specific Protease-7 promotes transcription. Proc Natl Acad Sci U S A 110:618–623
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer Science+Business Media New York
About this protocol
Cite this protocol
Collins, P.E., Colleran, A., Carmody, R.J. (2015). Control of NF-κB Subunits by Ubiquitination. In: May, M. (eds) NF-kappa B. Methods in Molecular Biology, vol 1280. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2422-6_21
Download citation
DOI: https://doi.org/10.1007/978-1-4939-2422-6_21
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-2421-9
Online ISBN: 978-1-4939-2422-6
eBook Packages: Springer Protocols