Advertisement

Microarray Transposon Tracking for the Mapping of Conditionally Essential Genes in Campylobacter jejuni

  • Martin Stahl
  • Alain Stintzi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1279)

Abstract

Although whole genome approaches to the study of bacteria have grown substantially in the past decade, there is still a need for quick and easy methods for the determination of which genes are essential for the growth of these bacteria under specific growth conditions. There are numerous methods to accomplish this depending on the resources and equipment available, each with their own advantages and disadvantages. Here we describe a method we successfully employed to map the essential genes of Campylobacter jejuni using a microarray transposon tracking approach where we constructed a saturated transposon mutant library in the C. jejuni strain NCTC11168 and used a genomic microarray approach to identify genes lacking transposon insertions under standard laboratory growth conditions. With a fully saturated library, the absence of transposon insertions can be used as an indicator of a gene essential for the survival and growth for the conditions used for the mutant library.

Key words

Campylobacter jejuni Essential genes Microarray Transposon based mutant library Dispensable genes 

References

  1. 1.
    Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M, Asai K, Ashikaga S, Aymerich S, Bessieres P, Boland F, Brignell SC, Bron S, Bunai K, Chapuis J, Christiansen LC, Danchin A, Debarbouille M, Dervyn E, Deuerling E, Devine K, Devine SK, Dreesen O, Errington J, Fillinger S, Foster SJ, Fujita Y, Galizzi A, Gardan R, Eschevins C, Fukushima T, Haga K, Harwood CR, Hecker M, Hosoya D, Hullo MF, Kakeshita H, Karamata D, Kasahara Y, Kawamura F, Koga K, Koski P, Kuwana R, Imamura D, Ishimaru M, Ishikawa S, Ishio I, Le Coq D, Masson A, Mauel C, Meima R, Mellado RP, Moir A, Moriya S, Nagakawa E, Nanamiya H, Nakai S, Nygaard P, Ogura M, Ohanan T, O’Reilly M, O’Rourke M, Pragai Z, Pooley HM, Rapoport G, Rawlins JP, Rivas LA, Rivolta C, Sadaie A, Sadaie Y, Sarvas M, Sato T, Saxild HH, Scanlan E, Schumann W, Seegers JF, Sekiguchi J, Sekowska A, Seror SJ, Simon M, Stragier P, Studer R, Takamatsu H, Tanaka T, Takeuchi M, Thomaides HB, Vagner V, van Dijl JM, Watabe K, Wipat A, Yamamoto H, Yamamoto M, Yamamoto Y, Yamane K, Yata K, Yoshida K, Yoshikawa H, Zuber U, Ogasawara N (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–4683. doi: 10.1073/pnas.0730515100
  2. 2.
    de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A, Cruaud C, Samair S, Lechaplais C, Gyapay G, Richez C, Durot M, Kreimeyer A, Le Fevre F, Schachter V, Pezo V, Doring V, Scarpelli C, Medigue C, Cohen GN, Marliere P, Salanoubat M, Weissenbach J (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 4:174. doi: 10.1038/msb.2008.10 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Akerley BJ, Rubin EJ, Novick VL, Amaya K, Judson N, Mekalanos JJ (2002) A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc Natl Acad Sci U S A 99(2):966–971. doi: 10.1073/pnas.012602299 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48(1):77–84PubMedCrossRefGoogle Scholar
  5. 5.
    Salama NR, Shepherd B, Falkow S (2004) Global transposon mutagenesis and essential gene analysis of Helicobacter pylori. J Bacteriol 186(23):7926–7935. doi: 10.1128/JB.186.23.7926-7935.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA 3rd, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103(2):425–430. doi: 10.1073/pnas.0510013103 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Liberati NT, Urbach JM, Miyata S, Lee DG, Drenkard E, Wu G, Villanueva J, Wei T, Ausubel FM (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103(8):2833–2838. doi: 10.1073/pnas.0511100103 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Gallagher LA, Ramage E, Jacobs MA, Kaul R, Brittnacher M, Manoil C (2007) A comprehensive transposon mutant library of Francisella novicida, a bioweapon surrogate. Proc Natl Acad Sci U S A 104(3):1009–1014. doi: 10.1073/pnas.0606713104 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    French CT, Lao P, Loraine AE, Matthews BT, Yu H, Dybvig K (2008) Large-scale transposon mutagenesis of Mycoplasma pulmonis. Mol Microbiol 69(1):67–76. doi: 10.1111/j.1365-2958.2008.06262.x PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kraemer PS, Mitchell A, Pelletier MR, Gallagher LA, Wasnick M, Rohmer L, Brittnacher MJ, Manoil C, Skerett SJ, Salama NR (2009) Genome-wide screen in Francisella novicida for genes required for pulmonary and systemic infection in mice. Infect Immun 77(1):232–244. doi: 10.1128/IAI. 00978-08 PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Stahl M, Stintzi A (2011) Identification of essential genes in C. jejuni genome highlights hyper-variable plasticity regions. Funct Integr Genomics 11(2):241–257. doi: 10.1007/s10142-011-0214-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Metris A, Reuter M, Gaskin DJ, Baranyi J, van Vliet AH (2011) In vivo and in silico determination of essential genes of Campylobacter jejuni. BMC Genomics 12:535. doi: 10.1186/1471-2164-12-535 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ji Y, Zhang B, Van SF, Horn WP, Woodnutt G, Burnham MK, Rosenberg M (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293(5538):2266–2269. doi: 10.1126/science.1063566 PubMedCrossRefGoogle Scholar
  14. 14.
    Knuth K, Niesalla H, Hueck CJ, Fuchs TM (2004) Large-scale identification of essential Salmonella genes by trapping lethal insertions. Mol Microbiol 51(6):1729–1744PubMedCrossRefGoogle Scholar
  15. 15.
    Parrish JR, Yu J, Liu G, Hines JA, Chan JE, Mangiola BA, Zhang H, Pacifico S, Fotouhi F, DiRita VJ, Ideker T, Andrews P, Finley RL Jr (2007) A proteome-wide protein interaction map for Campylobacter jejuni. Genome Biol 8(7):R130. doi: 10.1186/gb-2007-8-7-r130 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Stintzi A (2003) Gene expression profile of Campylobacter jejuni in response to growth temperature variation. J Bacteriol 185(6):2009–2016PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Reid AN, Pandey R, Palyada K, Whitworth L, Doukhanine E, Stintzi A (2008) Identification of Campylobacter jejuni genes contributing to acid adaptation by transcriptional profiling and genome-wide mutagenesis. Appl Environ Microbiol 74(5):1598–1612. doi: 10.1128/AEM. 01508-07 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Reid AN, Pandey R, Palyada K, Naikare H, Stintzi A (2008) Identification of Campylobacter jejuni genes involved in the response to acidic pH and stomach transit. Appl Environ Microbiol 74(5):1583–1597. doi: 10.1128/AEM. 01507-07 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Palyada K, Sun YQ, Flint A, Butcher J, Naikare H, Stintzi A (2009) Characterization of the oxidative stress stimulon and PerR regulon of Campylobacter jejuni. BMC Genomics 10:481. doi: 10.1186/1471-2164-10-481 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Division of GastroenterologyBC’s Children’s Hospital, the Child and Family Research Institute and the University of British ColumbiaVancouverCanada
  2. 2.Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems BiologyUniversity of OttawaOttawaCanada

Personalised recommendations