Advertisement

Single-Stranded DNA Aptamers for Functional Probing of Bacterial RNA Polymerase

Part of the Methods in Molecular Biology book series (MIMB, volume 1276)

Abstract

Bacterial RNA polymerase (RNAP) is the main regulatory hub of gene transcription. During transcription, RNAP interacts with the DNA template, RNA product, nucleotide substrates, metal cofactors, and regulatory molecules that bind to distinct RNAP sites to modulate its activity. RNAP is also inhibited by several known antibiotics and is a promising target for development of novel antibacterial compounds. Despite great progress in structural analysis of RNAP in recent years, many details of RNAP interactions with nucleic acids, regulatory molecules and antibiotics remain insufficiently understood. Aptamers that target various epitopes on the RNAP molecule represent a useful tool for functional analysis of transcription. Here, we describe protocols for selection of highly specific aptamers to different components of RNAP and their applications for analysis of RNAP–ligand interactions and RNAP inhibition.

Key words

RNA polymerase Aptamers Promoter recognition Transcription inhibition Rifamycin 

Notes

Acknowledgements

We thank I. Artsimovitch for plasmids, proteins and rifamycins. This work was supported in part by the Russian Academy of Sciences Presidium Program in Molecular and Cellular Biology and by the Russian Foundation for Basic Research (grants 12-04-33187, 12-04-32042 and 14-04-01696).

References

  1. 1.
    Ho MX, Hudson BP, Das K, Arnold E, Ebright RH (2009) Structures of RNA polymerase-antibiotic complexes. Curr Opin Struct Biol 19:715–723CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Srivastava A, Talaue M, Liu S, Degen D, Ebright RY, Sineva E, Chakraborty A, Druzhinin SY, Chatterjee S, Mukhopadhyay J et al (2011) New target for inhibition of bacterial RNA polymerase: ‘switch region’. Curr Opin Microbiol 14:532–543CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Artsimovitch I, Svetlov V, Nemetski SM, Epshtein V, Cardozo T, Nudler E (2011) Tagetitoxin inhibits RNA polymerase through trapping of the trigger loop. J Biol Chem 286:40395–40400CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Kuznedelov K, Semenova E, Knappe TA, Mukhamedyarov D, Srivastava A, Chatterjee S, Ebright RH, Marahiel MA, Severinov K (2011) The antibacterial threaded-lasso peptide capistruin inhibits bacterial RNA polymerase. J Mol Biol 412:842–848CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Tupin A, Gualtieri M, Leonetti JP, Brodolin K (2010) The transcription inhibitor lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site. EMBO J 29:2527–2537CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Gold L, Polisky B, Uhlenbeck O, Yarus M (1995) Diversity of oligonucleotide functions. Annu Rev Biochem 64:763–797CrossRefPubMedGoogle Scholar
  7. 7.
    Kulbachinskiy AV (2007) Methods for selection of aptamers to protein targets. Biochemistry (Mosc) 72:1505–1518CrossRefGoogle Scholar
  8. 8.
    Tuerk C, MacDougal S, Gold L (1992) RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A 89:6988–6992CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Schneider DJ, Feigon J, Hostomsky Z, Gold L (1995) High-affinity ssDNA inhibitors of the reverse transcriptase of type 1 human immunodeficiency virus. Biochemistry 34:9599–9610CrossRefPubMedGoogle Scholar
  10. 10.
    Dang C, Jayasena SD (1996) Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol 264:268–278CrossRefPubMedGoogle Scholar
  11. 11.
    Thomas M, Chedin S, Carles C, Riva M, Famulok M, Sentenac A (1997) Selective targeting and inhibition of yeast RNA polymerase II by RNA aptamers. J Biol Chem 272:27980–27986CrossRefPubMedGoogle Scholar
  12. 12.
    Kulbachinskiy A, Feklistov A, Krasheninnikov I, Goldfarb A, Nikiforov V (2004) Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB. Eur J Biochem 271:4921–4931CrossRefPubMedGoogle Scholar
  13. 13.
    Feklistov A, Barinova N, Sevostyanova A, Heyduk E, Bass I, Vvedenskaya I, Kuznedelov K, Merkiene E, Stavrovskaya E, Klimasauskas S et al (2006) A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. Mol Cell 23:97–107CrossRefPubMedGoogle Scholar
  14. 14.
    Sevostyanova A, Feklistov A, Barinova N, Heyduk E, Bass I, Klimasauskas S, Heyduk T, Kulbachinskiy A (2007) Specific recognition of the -10 promoter element by the free RNA polymerase sigma subunit. J Biol Chem 282:22033–22039CrossRefPubMedGoogle Scholar
  15. 15.
    Pupov D, Esyunina D, Feklistov A, Kulbachinskiy A (2013) Single-strand promoter traps for bacterial RNA polymerase. Biochem J 452:241–248CrossRefPubMedGoogle Scholar
  16. 16.
    Barinova N, Kuznedelov K, Severinov K, Kulbachinskiy A (2008) Structural modules of RNA polymerase required for transcription from promoters containing downstream basal promoter element GGGA. J Biol Chem 283:22482–22489CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Haugen SP, Berkmen MB, Ross W, Gaal T, Ward C, Gourse RL (2006) rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125:1069–1082CrossRefPubMedGoogle Scholar
  18. 18.
    Haugen SP, Ross W, Manrique M, Gourse RL (2008) Fine structure of the promoter-sigma region 1.2 interaction. Proc Natl Acad Sci U S A 105:3292–3297CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Feklistov A, Mekler V, Jiang Q, Westblade LF, Irschik H, Jansen R, Mustaev A, Darst SA, Ebright RH (2008) Rifamycins do not function by allosteric modulation of binding of Mg2+ to the RNA polymerase active center. Proc Natl Acad Sci U S A 105:14820–14825CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Artsimovitch I, Vassylyeva MN, Svetlov D, Svetlov V, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Tahirov TH, Vassylyev DG (2005) Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins. Cell 122:351–363CrossRefPubMedGoogle Scholar
  21. 21.
    Molodtsov V, Nawarathne IN, Scharf NT, Kirchhoff PD, Showalter HD, Garcia GA, Murakami KS (2013) X-ray crystal structures of the Escherichia coli RNA polymerase in complex with benzoxazinorifamycins. J Med Chem 56:4758–4763CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Connolly BA, Liu HH, Parry D, Engler LE, Kurpiewski MR, Jen-Jacobson L (2001) Assay of restriction endonucleases using oligonucleotides. Methods Mol Biol 148:465–490PubMedGoogle Scholar
  23. 23.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefPubMedGoogle Scholar
  24. 24.
    Fitzwater T, Polisky B (1996) A SELEX primer. Methods Enzymol 267:275–301CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations