Skip to main content

Manipulating Archaeal Systems to Permit Analyses of Transcription Elongation-Termination Decisions In Vitro

  • Protocol
  • First Online:
Bacterial Transcriptional Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1276))

Abstract

Transcription elongation by multisubunit RNA polymerases (RNAPs) is processive, but neither uniform nor continuous. Regulatory events during elongation include pausing, backtracking, arrest, and transcription termination, and it is critical to determine whether the absence of continued synthesis is transient or permanent. Here we describe mechanisms to generate large quantities of stable archaeal elongation complexes on a solid support to permit (1) single-round transcription, (2) walking of RNAP to any defined template position, and (3) discrimination of transcripts that are associated with RNAP from those that are released to solution. This methodology is based on untagged proteins transcribing biotin- and digoxigenin-labeled DNA templates in association with paramagnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yarnell WS, Roberts JW (1999) Mechanism of intrinsic transcription termination and antitermination. Science 284(5414):611–615

    Article  CAS  PubMed  Google Scholar 

  2. Santangelo TJ, Roberts JW (2004) Forward translocation is the natural pathway of RNA release at an intrinsic terminator. Mol Cell 14(1):117–126

    Article  CAS  PubMed  Google Scholar 

  3. Santangelo TJ, Artsimovitch I (2011) Termination and antitermination: RNA polymerase runs a stop sign. Nat Rev Microbiol 9(5):319–329. doi:10.1038/nrmicro2560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Toulokhonov I, Artsimovitch I, Landick R (2001) Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292(5517):730–733. doi:10.1126/science.1057738

    Article  CAS  PubMed  Google Scholar 

  5. White E, Kamieniarz-Gdula K, Dye MJ, Proudfoot NJ (2013) AT-rich sequence elements promote nascent transcript cleavage leading to RNA polymerase II termination. Nucleic Acids Res 41(3):1797–1806. doi:10.1093/nar/gks1335

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Santangelo TJ, Reeve JN (2006) Archaeal RNA polymerase is sensitive to intrinsic termination directed by transcribed and remote sequences. J Mol Biol 355(2):196–210. doi:10.1016/j.jmb.2005.10.062

    Article  CAS  PubMed  Google Scholar 

  7. Santangelo TJ, Cubonova L, Skinner KM, Reeve JN (2009) Archaeal intrinsic transcription termination in vivo. J Bacteriol 191(22):7102–7108. doi:10.1128/JB.00982-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hollands K, Sevostiyanova A, Groisman EA (2014) Unusually long-lived pause required for regulation of a Rho-dependent transcription terminator. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1319193111

    PubMed Central  PubMed  Google Scholar 

  9. Guo J, Turek ME, Price DH (2014) Regulation of RNA polymerase II Termination by phosphorylation of Gdown1. J Biol Chem 289(18):12657–12665. doi:10.1074/jbc.M113.537662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Webb S, Hector RD, Kudla G, Granneman S (2014) PAR-CLIP data indicate that Nrd1-Nab3-dependent transcription termination regulates expression of hundreds of protein coding genes in yeast. Genome Biol 15(1):R8. doi:10.1186/gb-2014-15-1-r8

    Article  PubMed Central  PubMed  Google Scholar 

  11. Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P, Gagneur J, Soeding J, Cramer P (2013) Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 155(5):1075–1087. doi:10.1016/j.cell.2013.10.024

    Article  CAS  PubMed  Google Scholar 

  12. Contreras X, Benkirane M, Kiernan R (2013) Premature termination of transcription by RNAP II: the beginning of the end. Transcription 4(2):72–76. doi:10.4161/trns.24148

    Article  PubMed Central  PubMed  Google Scholar 

  13. Peters JM, Mooney RA, Grass JA, Jessen ED, Tran F, Landick R (2012) Rho and NusG suppress pervasive antisense transcription in Escherichia coli. Genes Dev 26(23):2621–2633. doi:10.1101/gad.196741.112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Conaway RC, Conaway JW (2013) The Mediator complex and transcription elongation. Biochim Biophys Acta 1829(1):69–75. doi:10.1016/j.bbagrm.2012.08.017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Wagschal A, Rousset E, Basavarajaiah P, Contreras X, Harwig A, Laurent-Chabalier S, Nakamura M, Chen X, Zhang K, Meziane O, Boyer F, Parrinello H, Berkhout B, Terzian C, Benkirane M, Kiernan R (2012) Microprocessor, Setx, Xrn2, and Rrp6 co-operate to induce premature termination of transcription by RNAPII. Cell 150(6):1147–1157. doi:10.1016/j.cell.2012.08.004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Peters JM, Vangeloff AD, Landick R (2011) Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol 412(5):793–813. doi:10.1016/j.jmb.2011.03.036

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mischo HE, Proudfoot NJ (2013) Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast. Biochim Biophys Acta 1829(1):174–185. doi:10.1016/j.bbagrm.2012.10.003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, Proshkin S, Mironov A, Nudler E (2014) UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 505(7483):372–377. doi:10.1038/nature12928

    Article  CAS  PubMed  Google Scholar 

  19. Spitalny P, Thomm M (2008) A polymerase III-like reinitiation mechanism is operating in regulation of histone expression in archaea. Mol Microbiol 67(5):958–970. doi:10.1111/j.1365-2958.2007.06084.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Werner F (2013) Molecular mechanisms of transcription elongation in archaea. Chem Rev 113(11):8331–8349. doi:10.1021/cr4002325

    Article  CAS  PubMed  Google Scholar 

  21. Grohmann D, Werner F (2010) Hold on!: RNA polymerase interactions with the nascent RNA modulate transcription elongation and termination. RNA Biol 7(3):310–315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Adhya S, Gottesman M (1978) Control of transcription termination. Annu Rev Biochem 47:967–996. doi:10.1146/annurev.bi.47.070178.004535

    Article  CAS  PubMed  Google Scholar 

  23. Goldman SR, Ebright RH, Nickels BE (2009) Direct detection of abortive RNA transcripts in vivo. Science 324(5929):927–928. doi:10.1126/science.1169237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Hsu LM (2002) Promoter clearance and escape in prokaryotes. Biochim Biophys Acta 1577(2):191–207

    Article  CAS  PubMed  Google Scholar 

  25. Carpousis AJ, Gralla JD (1980) Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19(14):3245–3253

    Article  CAS  PubMed  Google Scholar 

  26. Gralla JD, Carpousis AJ, Stefano JE (1980) Productive and abortive initiation of transcription in vitro at the lac UV5 promoter. Biochemistry 19(25):5864–5869

    Article  CAS  PubMed  Google Scholar 

  27. Epshtein V, Dutta D, Wade J, Nudler E (2010) An allosteric mechanism of Rho-dependent transcription termination. Nature 463(7278):245–249. doi:10.1038/nature08669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Nudler E, Gusarov I (2003) Analysis of the intrinsic transcription termination mechanism and its control. Methods Enzymol 371:369–382. doi:10.1016/s0076-6879(03)71028-3

    Article  CAS  PubMed  Google Scholar 

  29. Nudler E, Gusarov I, Bar-Nahum G (2003) Methods of walking with the RNA polymerase. Methods Enzymol 371:160–169. doi:10.1016/s0076-6879(03)71011-8

    Article  CAS  PubMed  Google Scholar 

  30. Hirata A, Murakami KS (2009) Archaeal RNA polymerase. Curr Opin Struct Biol 19(6):724–731. doi:10.1016/j.sbi.2009.10.006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Reich C, Zeller M, Milkereit P, Hausner W, Cramer P, Tschochner H, Thomm M (2009) The archaeal RNA polymerase subunit P and the eukaryotic polymerase subunit Rpb12 are interchangeable in vivo and in vitro. Mol Microbiol 71(4):989–1002. doi:10.1111/j.1365-2958.2008.06577.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Langer D, Hain J, Thuriaux P, Zillig W (1995) Transcription in archaea: similarity to that in eucarya. Proc Natl Acad Sci U S A 92(13):5768–5772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Werner F (2012) A nexus for gene expression-molecular mechanisms of Spt5 and NusG in the three domains of life. J Mol Biol 417(1–2):13–27. doi:10.1016/j.jmb.2012.01.031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Grohmann D, Werner F (2011) Recent advances in the understanding of archaeal transcription. Curr Opin Microbiol 14(3):328–334. doi:10.1016/j.mib.2011.04.012

    Article  CAS  PubMed  Google Scholar 

  35. Werner F, Grohmann D (2011) Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 9(2):85–98. doi:10.1038/nrmicro2507

    Article  CAS  PubMed  Google Scholar 

  36. Kostrewa D, Zeller ME, Armache KJ, Seizl M, Leike K, Thomm M, Cramer P (2009) RNA polymerase II-TFIIB structure and mechanism of transcription initiation. Nature 462(7271):323–330. doi:10.1038/nature08548

    Article  CAS  PubMed  Google Scholar 

  37. Kusser AG, Bertero MG, Naji S, Becker T, Thomm M, Beckmann R, Cramer P (2008) Structure of an archaeal RNA polymerase. J Mol Biol 376(2):303–307. doi:10.1016/j.jmb.2007.08.066

    Article  CAS  PubMed  Google Scholar 

  38. Santangelo TJ, Cubonova L, James CL, Reeve JN (2007) TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 367(2):344–357. doi:10.1016/j.jmb.2006.12.069

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Thomm M, Stetter KO (1985) Transcription in methanogens. Evidence for specific in vitro transcription of the purified DNA-dependent RNA polymerase of Methanococcus thermolithotrophicus. Eur J Biochem 149(2):345–351

    Article  CAS  PubMed  Google Scholar 

  40. Hudepohl U, Reiter WD, Zillig W (1990) In vitro transcription of two rRNA genes of the archaebacterium Sulfolobus sp. B12 indicates a factor requirement for specific initiation. Proc Natl Acad Sci U S A 87(15):5851–5855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hethke C, Geerling AC, Hausner W, de Vos WM, Thomm M (1996) A cell-free transcription system for the hyperthermophilic archaeon Pyrococcus furiosus. Nucleic Acids Res 24(12):2369–2376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Werner F, Weinzierl RO (2002) A recombinant RNA polymerase II-like enzyme capable of promoter-specific transcription. Mol Cell 10(3):635–646

    Article  CAS  PubMed  Google Scholar 

  43. Qureshi SA, Bell SD, Jackson SP (1997) Factor requirements for transcription in the Archaeon Sulfolobus shibatae. EMBO J 16(10):2927–2936. doi:10.1093/emboj/16.10.2927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Madon J, Leser U, Zillig W (1983) DNA-dependent RNA polymerase from the extremely halophilic archaebacterium Halococcus morrhuae. Eur J Biochem 135(2):279–283

    Article  CAS  PubMed  Google Scholar 

  45. Bell SD, Magill CP, Jackson SP (2001) Basal and regulated transcription in Archaea. Biochem Soc Trans 29(Pt 4):392–395

    Article  CAS  PubMed  Google Scholar 

  46. Hirata A, Klein BJ, Murakami KS (2008) The X-ray crystal structure of RNA polymerase from Archaea. Nature 451(7180):851–854. doi:10.1038/nature06530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Lessner FH, Jennings ME, Hirata A, Duin EC, Lessner DJ (2012) Subunit D of RNA polymerase from Methanosarcina acetivorans contains two oxygen-labile [4Fe-4S] clusters: implications for oxidant-dependent regulation of transcription. J Biol Chem 287(22):18510–18523. doi:10.1074/jbc.M111.331199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Xie Y, Reeve JN (2003) In vitro transcription assays using components from Methanothermobacter thermautotrophicus. Methods Enzymol 370:66–72. doi:10.1016/s0076-6879(03)70006-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (GM-100329) from the National Institutes of Health to TJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Santangelo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gehring, A.M., Santangelo, T.J. (2015). Manipulating Archaeal Systems to Permit Analyses of Transcription Elongation-Termination Decisions In Vitro. In: Artsimovitch, I., Santangelo, T. (eds) Bacterial Transcriptional Control. Methods in Molecular Biology, vol 1276. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2392-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2392-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2391-5

  • Online ISBN: 978-1-4939-2392-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics