High-Resolution Magic-Angle-Spinning NMR Spectroscopy of Intact Tissue

  • Guro F. Giskeødegård
  • Maria D. Cao
  • Tone F. Bathen
Part of the Methods in Molecular Biology book series (MIMB, volume 1277)


High-resolution magic-angle-spinning (HR-MAS) NMR spectroscopy is a nondestructive technique that is used to obtain the metabolite profile of a tissue sample. This method requires minimal sample preparation. However, it is important to handle the sample with care and keep it frozen during preparation to minimize degradation. Here, we describe a typical protocol for HR-MAS analysis of intact tissue. We also include examples of typical pulse sequence programs and quantification methods that are used today.

Key words

High-resolution magic-angle-spinning NMR spectroscopy Metabolites Tissue analysis Sample storage Sample preparation Sample acquisition Pulse sequences Metabolite quantification 



The authors thank senior engineer Trygve Andreassen for useful consultation regarding MRS acquisition procedures.


  1. 1.
    Andrew ER, Bradbury A, Eades RG (1958) Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. Nature 182, 1659Google Scholar
  2. 2.
    Andrew ER (1971) The narrowing of NMR spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin multiplet structures for solids. Prog Nucl Magn Reson Spectrosc 8:1–39CrossRefGoogle Scholar
  3. 3.
    Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285CrossRefGoogle Scholar
  4. 4.
    Sitter B, Sonnewald U, Spraul M et al (2002) High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed 15:327–337CrossRefPubMedGoogle Scholar
  5. 5.
    Sitter B, Bathen T, Tessem M et al (2009) High-resolution magic angle spinning (HR MAS) MR spectroscopy in metabolic characterization of human cancer. Prog Nucl Magn Reson Spectrosc 54:239–254CrossRefGoogle Scholar
  6. 6.
    Beckonert O, Coen M, Keun HC et al (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032CrossRefPubMedGoogle Scholar
  7. 7.
    Bathen TF, Sitter B, Sjøbakk TE et al (2010) Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res 70:6692–6696CrossRefPubMedGoogle Scholar
  8. 8.
    Borgan E, Sitter B, Lingjaerde OC et al (2010) Merging transcriptomics and metabolomics—advances in breast cancer profiling. BMC Cancer 10:628CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Cao MD, Döpkens M, Krishnamachary B et al (2012) Glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5) expression correlates with malignant choline phospholipid metabolite profiles in human breast cancer. NMR Biomed 25:1033–1042CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Giskeødegård GF, Grinde MT, Sitter B et al (2010) Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res 9:972–979CrossRefPubMedGoogle Scholar
  11. 11.
    Cao MD, Giskeodegard GF, Bathen TF et al (2012) Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy. BMC Cancer 12:39CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Giskeødegård GF, Bertilsson H, Selnæs KM et al (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8:e62375CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Swanson MG, Keshari KR, Tabatabai ZL et al (2008) Quantification of choline- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 60:33–40CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Sjøbakk TE, Vettukattil R, Gulati M et al (2013) Metabolic profiles of brain metastases. Int J Mol Sci 14:2104–2118CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Righi V, Tugnoli V, Mucci A et al (2012) MRS study of meningeal hemangiopericytoma and edema: a comparison with meningothelial meningioma. Oncol Rep 28:1461–1467PubMedGoogle Scholar
  16. 16.
    Wu C-L, Taylor JL, He W et al (2003) Proton high-resolution magic angle spinning NMR analysis of fresh and previously frozen tissue of human prostate. Magn Reson Med 50:1307–1311CrossRefPubMedGoogle Scholar
  17. 17.
    Jordan K, He W, Halpern E et al (2007) Evaluation of tissue metabolites with high resolution magic angle spinning MR Spectroscopy human prostate samples after three-year storage at −80 °C. Biomark Insights 2:147PubMedCentralPubMedGoogle Scholar
  18. 18.
    McKay RT (2011) How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: an examination of the pulse sequence components and evolution. Concepts Magn Reson 38A:197–220CrossRefGoogle Scholar
  19. 19.
    Wu DH, Chen AD, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson A 115:260–264CrossRefGoogle Scholar
  20. 20.
    Aue WP, Karhan J, Ernst RR (1976) Homonuclear broad-band decoupling and 2-dimensional J-resolved NMR-spectroscopy. J Chem Phys 64:4226–4227CrossRefGoogle Scholar
  21. 21.
    Kriat M, Confort-Gouny S, Vion-Dury J et al (1992) Quantitation of metabolites in human blood serum by proton magnetic resonance spectroscopy. A comparative study of the use of formate and TSP as concentration standards. NMR Biomed 5:179–184CrossRefPubMedGoogle Scholar
  22. 22.
    Cheng LL, C W, Smith MR et al (2001) Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett 494:112–116CrossRefPubMedGoogle Scholar
  23. 23.
    Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71:2554–2557CrossRefPubMedGoogle Scholar
  24. 24.
    Cao MD, Sitter B, Bathen TF et al (2012) Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed 25:369–378CrossRefPubMedGoogle Scholar
  25. 25.
    Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128:2571–2576CrossRefPubMedGoogle Scholar
  26. 26.
    Esmaeili M, Bathen TF, Engebråten O et al (2014) Quantitative 31P HR-MAS MR spectroscopy for detection of response to PI3K/mTOR inhibition in breast cancer xenografts. Magn Reson Med 71:1973–81CrossRefPubMedGoogle Scholar
  27. 27.
    Piotto M, Elbayed K, Wieruszeski J-M et al (2005) Practical aspects of shimming a high resolution magic angle spinning probe. J Magn Reson 173:84–89CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guro F. Giskeødegård
    • 1
    • 2
  • Maria D. Cao
    • 1
    • 2
  • Tone F. Bathen
    • 1
    • 2
    • 3
  1. 1.Department of Circulation and Medical ImagingNorwegian University of Science and Technology (NTNU)TrondheimNorway
  2. 2.St. Olavs HospitalTrondheim University HospitalTrondheimNorway
  3. 3.TrondheimNorway

Personalised recommendations