Skip to main content

Metabonomics and Systems Biology

  • Protocol
  • First Online:
Metabonomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1277))

Abstract

Systems biology represents an integrative research strategy that studies the interactions between DNA, mRNA, protein, and metabolite level in an organism, thereby including the interactions with the physical environment and other organisms. The application of metabonomics, or the quantitative study of metabolites in biological systems, in systems biology is currently an emerging area of research, which can contribute to the discovery of (disease) signatures, drug targeting and design, and the further elucidation of basic and more complex biochemical principles. This chapter covers the contribution of metabonomics in advancing our understanding in systems biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22:1249–1252

    Article  CAS  PubMed  Google Scholar 

  2. Petranovic D, Tyo K, Vemuri GN et al (2010) Prospects of yeast systems biology for human health: integrating lipid, protein and energy metabolism. FEMS Yeast Res 10:1046–1059

    Article  CAS  PubMed  Google Scholar 

  3. Snoep JL, Bruggeman F, Olivier BG et al (2006) Towards building the silicon cell: a modular approach. BioSystems 83:207–216

    Article  CAS  PubMed  Google Scholar 

  4. Hood L, Rowen L, Galas DJ et al (2008) Systems biology at the Institute for Systems Biology. Brief Funct Genomic Proteomic 7:239–248

    Article  CAS  PubMed  Google Scholar 

  5. Lazebnik Y (2002) Can a biologist fix a radio?—Or, what I learned while studying apoptosis. Cancer Cell 2:179–182

    Article  CAS  PubMed  Google Scholar 

  6. Hyotylainen T, Oresic M (2014) Systems biology strategies to study lipidomes in health and disease. Prog Lipid Res 55:43–60. doi:10.1016/j.plipres.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  7. Fiehn O (2002) Metabolomics: the link between genotypes and phenotypes. Plant Mol Biol 48:155–171

    Article  CAS  PubMed  Google Scholar 

  8. Nicholson JK, Lindon JC, Holmes E (1999) ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–1189

    Article  CAS  PubMed  Google Scholar 

  9. Ellis DI, Dunn WB, Griffin JL et al (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–1266

    Article  CAS  PubMed  Google Scholar 

  10. De Preter V, Verbeke K (2013) Metabolomics as a diagnostic tool in gastroenterology. World J Gastrointest Pharmacol Ther 4:97–107

    PubMed Central  PubMed  Google Scholar 

  11. Lu W, Bennett BD, Rabinowitz JD (2008) Analytical strategies for LC-MS-based targeted metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 871:236–242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Pasikanti KK, Ho PC, Chan EC (2008) Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 871:202–211

    Article  CAS  PubMed  Google Scholar 

  13. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  14. Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134:714–717

    Article  CAS  PubMed  Google Scholar 

  15. Heather LC, Wang X, West JA et al (2013) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol 55:2–11

    Article  CAS  PubMed  Google Scholar 

  16. Assfalg M, Bertini I, Colangiuli D et al (2008) Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci U S A 105:1420–1424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    Article  CAS  PubMed  Google Scholar 

  18. Jenkins M, Flynn A, Smart T et al (2011) PSI Biomarker Special Interest Group. A statistician’s perspective on biomarkers in drug development. Pharm Stat 10:494–507

    Article  PubMed  Google Scholar 

  19. Xia J, Broadhurst DI, Wilson M et al (2013) Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics 9:280–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nielsen J, Oliver S (2005) The next wave in metabolome analysis. Trends Biotechnol 23:544–546

    Article  CAS  PubMed  Google Scholar 

  21. Mardinoglu A, Nielsen J (2012) Systems medicine and metabolic modelling. J Intern Med 271:142–154

    Article  CAS  PubMed  Google Scholar 

  22. Alexandersson E, Jacobson D, Vivier MA et al (2014) Field-omics-understanding large-scale molecular data from field crops. Front Plant Sci 5:286

    Article  PubMed Central  PubMed  Google Scholar 

  23. Jewett MC, Hofmann G, Nielsen J (2006) Fungal metabolite analysis in genomics and phenomics. Curr Opin Biotechnol 17:191–197

    Article  CAS  PubMed  Google Scholar 

  24. Sekirov I, Russell SL, Antunes LC et al (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    Article  CAS  PubMed  Google Scholar 

  25. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270

    PubMed Central  CAS  PubMed  Google Scholar 

  26. van Baarlen P, Kleerebezem M, Wells JM (2013) Omics approaches to study host-microbiota interactions. Curr Opin Microbiol 16:270–277

    Article  PubMed  Google Scholar 

  27. Joossens M, Huys G, Cnockaert M et al (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637

    Article  PubMed  Google Scholar 

  28. Krogius-Kurikka L, Lyra A, Malinen E et al (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol 9:95

    Article  PubMed Central  PubMed  Google Scholar 

  29. De Preter V, Machiels K, Joossens M et al (2014) Fecal metabolite profiling identifies medium chain fatty acids as discriminating compounds for inflammatory bowel disease. Gut. doi:10.1136/gutjnl-2013-306423

    Google Scholar 

  30. Bjerrum JT, Rantalainen M, Wang Y et al (2014) Integration of transcriptomics and metabonomics: improving diagnostics, biomarker identification and phenotyping in ulcerative colitis. Metabolomics 10:280–290

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Bjerrum JT, Wang Y, Hao F et al (2014) Metabonomics of human fecal extracts characterize ulcerative colitis. Crohn’s disease and healthy individuals. Metabolomics. doi:10.1007/s11306-014-0677-3

    Google Scholar 

  32. Berndt U, Bartsch S, Philipsen L et al (2007) Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn’s disease and ulcerative colitis. J Immunol 179:295–304

    Article  CAS  PubMed  Google Scholar 

  33. Olsen J, Gerds TA, Seidelin JB et al (2009) Diagnosis of ulcerative colitis before onset of inflammation by multivariate modeling of genome-wide gene expression data. Inflamm Bowel Dis 15:1032–1038

    Article  PubMed  Google Scholar 

  34. Arijs I, Quintens R, Van Lommel L et al (2010) Predictive value of epithelial gene expression profiles for response to infliximab in Crohn’s disease. Inflamm Bowel Dis 16:2090–2098

    Article  PubMed  Google Scholar 

  35. Lamendella R, Verberkmoes N, Jansson JK (2012) ‘Omics’ of the mammalian gut—new insights into function. Curr Opin Biotechnol 23:491–500

    Article  CAS  PubMed  Google Scholar 

  36. Yau Y, Leong RW, Zeng M et al (2013) Proteomics and metabolomics in inflammatory bowel disease. J Gastroenterol Hepatol 28:1076–1086

    Article  CAS  PubMed  Google Scholar 

  37. Av G, Flatberg A, Østvik AE et al (2013) Whole genome gene expression meta-analysis of inflammatory bowel disease colon mucosa demonstrates lack of major differences between Crohn’s disease and ulcerative colitis. PLoS One 8:e56818

    Article  Google Scholar 

  38. Barallobre-Barreiro J, Chung YL, Mayr M (2013) Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease. Rev Esp Cardiol (Engl Ed) 66:657–661

    Article  Google Scholar 

  39. Mayr M, Yusuf S, Weir G et al (2008) Combined metabolomic and proteomic analysis of human atrial fibrillation. J Am Coll Cardiol 51:585–594

    Article  CAS  PubMed  Google Scholar 

  40. Gieger C, Geistlinger L, Altmaier E et al (2008) Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 4:e1000282

    Article  PubMed Central  PubMed  Google Scholar 

  41. Kim H-Y, Kim H-R, Lee S-H (2014) Advances in systems biology approaches for autoimmune diseases. Immune Netw 14:73–80

    Article  PubMed Central  PubMed  Google Scholar 

  42. Blumberg RS, Dittel B, Hafler D et al (2012) Unraveling the autoimmune translational research process layer by layer. Nat Med 18:35–41

    Article  CAS  PubMed  Google Scholar 

  43. Ghosh D, Poisson LM (2009) “Omics” data and levels of evidence for biomarker discovery. Genomics 93:13–16

    Article  CAS  PubMed  Google Scholar 

  44. Wu T, Xie C, Han J et al (2012) Metabolic disturbances associated with systemic lupus erythematosus. PLoS One 7:e37210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Ouyang X, Dai Y, Wen JL et al (2011) (1)H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus 20:1411–1420

    Article  CAS  PubMed  Google Scholar 

  46. Balderas C, Rupérez FJ, Ibañez E et al (2013) Plasma and urine metabolic fingerprinting of type 1 diabetic children. Electrophoresis 34:2882–2890

    CAS  PubMed  Google Scholar 

  47. Dutta T, Chai HS, Ward LE et al (2012) Concordance of changes in metabolic pathways based on plasma metabolomics and skeletal muscle transcriptomics in type 1 diabetes. Diabetes 61:1004–1016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Scott DL, Wolfe F, Huizinga TJW (2010) Rheumatoid arthritis. Lancet 376:1094–1108

    Article  PubMed  Google Scholar 

  49. Young SP, Kapoor SR, Viant MR et al (2013) The impact of inflammation on metabolomic profiles in patients with arthritis. Arthritis Rheum 65:2015–2023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Priori R, Scrivo R, Brandt J et al (2013) Metabolomics in rheumatic diseases: the potential of an emerging methodology for improved patient diagnosis, prognosis, and treatment efficacy. Autoimmun Rev 12:1022–1030

    Article  CAS  PubMed  Google Scholar 

  51. Kitteringham NR, Jenkins RE, Lane CS et al (2009) Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 877:1229–1239

    Article  CAS  PubMed  Google Scholar 

  52. Wenk MR (2005) The emerging field of lipidomics. Nat Rev Drug Discov 4:594–610

    Article  CAS  PubMed  Google Scholar 

  53. Lam SM, Shui G (2013) Lipidomics as a principal tool for advancing biomedical research. J Gen Genom 40:375–390

    Article  CAS  Google Scholar 

  54. Hong MG, Karlsson R, Magnusson PK et al (2013) A genome-wide assessment of variability in human serum metabolism. Hum Mutat 34:515–524

    Article  CAS  PubMed  Google Scholar 

  55. Mikami T, Aoki M, Kimura T (2012) The application of mass spectrometry to proteomics and metabolomics in biomarker discovery and drug development. Curr Mol Pharmacol 5:301–316

    Article  CAS  PubMed  Google Scholar 

  56. Wishart DS (2008) Applications of metabolomics in drug discovery and development. Drugs R D 9:307–322

    Article  CAS  PubMed  Google Scholar 

  57. van der Greef J, McBurney RN (2005) Innovation: Rescuing drug discovery: in vivo systems pathology and systems pharmacology. Nat Rev Drug Discov 4:961–967

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicky De Preter Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

De Preter, V. (2015). Metabonomics and Systems Biology. In: Bjerrum, J. (eds) Metabonomics. Methods in Molecular Biology, vol 1277. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2377-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2377-9_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2376-2

  • Online ISBN: 978-1-4939-2377-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics