Electrochromatography on Acrylate-Based Monolith in Cyclic Olefin Copolymer Microchip: An Attractive Technology

  • Y. Ladner
  • G. Cretier
  • K. Faure
Part of the Methods in Molecular Biology book series (MIMB, volume 1274)


Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

Key words

Acrylate-based monolith COC microchip Electrochromatography 



The present process is under French patent no. FR1156586. The authors wish to thank the French National Research Agency for funding project ANR-11-JS09-01701.


  1. 1.
    Arora A, Simone G, Salieb-Beugelaar GB, Kim JT, Manz A (2010) Latest developments in micro total analysis systems. Anal Chem 82(12):4830–4847. doi: 10.1021/ac100969k CrossRefPubMedGoogle Scholar
  2. 2.
    Peterson DS (2005) Solid supports for micro analytical systems. Lab Chip 5:132–139CrossRefPubMedGoogle Scholar
  3. 3.
    Banholczer A, Pyell U (2000) Some considerations concerning the composition of the mobile phase in capillary electrochromatography. J Chromatogr A 869:363–374CrossRefPubMedGoogle Scholar
  4. 4.
    Svec F (2009) CEC: selected developments that caught my eye since the year 2000. Electrophoresis 30(S1):S68–S82CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Svec F (2006) Less common applications of monoliths: preconcentration and solid-phase extraction. J Chromatogr B 841(1–2):52–64CrossRefGoogle Scholar
  6. 6.
    Hilder EF, Svec F, Fréchet JMJ (2004) Development and application of polymeric monolithic stationary phases for capillary electrochromatography. J Chromatogr A 1044(1–2):3–22CrossRefPubMedGoogle Scholar
  7. 7.
    Pumera M (2005) Microchip-based electrochromatography: designs and applications. Talanta 66(4):1048–1062CrossRefPubMedGoogle Scholar
  8. 8.
    Proczek G, Augustin V, Descroix S, Hennion M-C (2009) Integrated microdevice for preconcentration and separation of a wide variety of compounds by electrochromatography. Electrophoresis 30(3):515–524CrossRefPubMedGoogle Scholar
  9. 9.
    Augustin V, Proczek G, Dugay J, Descroix S, Hennion MC (2007) Online preconcentration using monoliths in electrochromatography capillary format and microchips. J Sep Sci 30(17):2858–2865CrossRefPubMedGoogle Scholar
  10. 10.
    Nunes P, Ohlsson P, Ordeig O, Kutter J (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9(2):145–161CrossRefGoogle Scholar
  11. 11.
    Ladner Y, Crétier G, Faure K (2010) Electrochromatography in cyclic olefin copolymer microchips: a step towards field portable analysis. J Chromatogr A 1217(51):8001–8008CrossRefPubMedGoogle Scholar
  12. 12.
    Stachowiak T, Mair D, Holden T, Lee LJ, Svec F, Fréchet JMJ (2007) Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Sep Sci 30(7):1088–1093CrossRefPubMedGoogle Scholar
  13. 13.
    Ladner Y, Bruchet A, Cretier G, Dugas V, Randon J, Faure K (2012) New “one-step” method for the simultaneous synthesis and anchoring of organic monolith inside COC microchip channels. Lab Chip 12(9):1680–1685CrossRefPubMedGoogle Scholar
  14. 14.
    Ladner Y, Crétier G, Faure K (2012) Fabrication of acrylate monolith using photopolymerization: effect of light intensity on electrochromatographic performance. J Sep Sci 35(15):1940–1944CrossRefPubMedGoogle Scholar
  15. 15.
    Valette JC, Bizet AC, Demesmay C, Rocca JL, Verdon E (2004) Separation of basic compounds by capillary electrochromatography on an X-Terra RP18 stationary phase. J Chromatogr A 1049(1):171–181CrossRefPubMedGoogle Scholar
  16. 16.
    Robert F, Bert L, Denoroy L, Renaud B (1995) Capillary zone electrophoresis with laser-induced fluorescence detection for the determination of nanomolar concentrations of noradrenaline and dopamine: application to brain microdialyzate analysis. Anal Chem 67(11):1838–1844CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2015

Authors and Affiliations

  1. 1.Institut des Sciences Analytiques, UMR 5280 (CNRS/Université Lyon 1/ENS Lyon)Université de LyonVilleurbanneFrance

Personalised recommendations