Scoring Functions for AutoDock

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1273)

Abstract

Automated docking allows rapid screening of protein–ligand interactions. A scoring function composed of a force field and linear weights can be used to compute a binding energy from a docked atom configuration. For different force fields or types of molecules, it may be necessary to train a custom scoring function. This chapter describes the data and methods one must consider in developing a custom scoring function for use with AutoDock.

Key words

AutoDock Automated docking Gibbs free energies of binding Protein–ligand complexes Scoring functions 

References

  1. 1.
    Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857CrossRefPubMedGoogle Scholar
  2. 2.
    Mehler EL, Solmajer T (1991) Electrostatic effects in proteins: comparison of dielectric and charge models. Protein Eng 4:903–910CrossRefPubMedGoogle Scholar
  3. 3.
    Stouten PFW, Frömmel C, Nakamura H, Sander C (1993) An effective solvation term based on atomic occupancies for use in protein simulations. Mol Simul 10:97–120CrossRefGoogle Scholar
  4. 4.
    Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662CrossRefGoogle Scholar
  5. 5.
    Huey R, Morris GM, Olson AJ, Goodsell DS (2007) A semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152CrossRefPubMedGoogle Scholar
  6. 6.
    Morris GM, Lim-Wilby M (2008) Molecular docking. In: Kukol A (ed) Molecular modeling of proteins, Methods in molecular biology, vol 443. Humana, Totowa, NJ, pp 365–382CrossRefGoogle Scholar
  7. 7.
    Böhm HJ (1994) The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J Comput Aided Mol Des 8:243–256CrossRefPubMedGoogle Scholar
  8. 8.
    Laederach A, Reilly PJ (2003) Specific empirical free energy function for automated docking of carbohydrates to proteins. J Comput Chem 24:1748–1757CrossRefPubMedGoogle Scholar
  9. 9.
    Hill AD, Reilly PJ (2008) A Gibbs free energy correlation for automated docking of carbohydrates. J Comput Chem 29:1131–1141CrossRefPubMedGoogle Scholar
  10. 10.
    Kerzmann A, Neumann D, Kohlbacher O (2006) SLICK – scoring and energy functions for protein-carbohydrate interactions. J Chem Inf Model 46:1635–1642CrossRefPubMedGoogle Scholar
  11. 11.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedCentralPubMedGoogle Scholar
  12. 12.
    Hu L, Benson ML, Smith RD, Lerner MG, Carlson HA (2005) Binding MOAD (Mother Of All Databases). Proteins 60:333–340CrossRefPubMedGoogle Scholar
  13. 13.
    Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Benson ML, Smith RD, Khazanov NA, Dimcheff B, Beaver J, Dresslar P, Nerothin J, Carlson HA (2008) Binding MOAD, a high-quality protein-ligand database. Nucleic Acids Res 36:D674–D678CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Morris GM, Goodsell DS, Pique ME, Lindstrom W, Huey R, Forli S, Hart WE, Halliday S, Belew R, Olson AJ (2009) AutoDock 4.2 User guide. http://autodock.scripps.edu/faqs-help/manual. Accessed 20 Dec 2011
  16. 16.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  18. 18.
    Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam, pp 1167–1189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.St. Jude MedicalSaint PaulUSA
  2. 2.Department of Chemical and Biological EngineeringIowa State UniversityAmesUSA

Personalised recommendations