Skip to main content

Solution Conformation of Carbohydrates: A View by Using NMR Assisted by Modeling

  • Protocol
  • First Online:
Glycoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1273))

Abstract

Structural elucidation of complex carbohydrates in solution is not a trivial task. From the NMR view point, the limited chemical shift dispersion of sugar NMR spectra demands the combination of a variety of NMR techniques as well as the employment of molecular modeling methods. Herein, a general protocol for assignment of resonances and determination of inter-proton distances within the saccharides by homonuclear and heteronuclear experiments (i.e., 1H and 13C) is described. In addition, several computational tools and procedures for getting a final ensemble of geometries that represent the structure in solution are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C12E5:

n-dodecyl-penta(ethylene-glycol)

C12E6:

n-dodecyl-hexa(ethylene-glycol)

C8E5:

n-octyl-penta(ethylene glycol)

CHAPSO:

3-(cholamidopropyl)-dimethylammonio-2-hydroxyl-1-propane sulfonate

COSY:

COrrelation SpectroscopY

DHPC:

1,2-di-hexanoyl-sn-glycero-3-phosphocholine

DIODPC:

1,2-di-O-dodecyl-sn-glycero-3-phosphocholine

DMPC:

1,2-di-tetradecanoyl-sn-glycero-3-phosphocholine

DQF-COSY:

Double Quantum COrrelated SpectroscopY

HMBC:

Heteronuclear Multiple Bond Correlation

HMQC:

Heteronuclear Multiple Quantum Coherence

HSQC:

Heteronuclear Single Quantum Coherence

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser Enhancement Spectroscopy

ROESY:

Rotating frame NOE

TOCSY:

Total Correlation SpectroscopY

References

  1. Varki A, Cummings R, Esko J, Freeze H, Hart G, Marth J (1999) Essentials of glycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 653

    Google Scholar 

  2. Avci FY, Kasper DL (2010) How bacterial carbohydrates influence the adaptive immune system. Annu Rev Immunol 28:107–130

    Article  CAS  PubMed  Google Scholar 

  3. http://boc.chem.uu.nl/sugabase/databases.html

  4. Lütteke T, Bohne-Lang A, Loss A, Goetz T, Frank M, von der Lieth C-W (2006) GLYCOSCIENCES.de: an Internet portal to support glycomics and glycobiology research. Glycobiology 16:71R–81R

    Article  PubMed  Google Scholar 

  5. Toukach P, Joshi HJ, Ranzinger R, Knirel Y, von der Lieth C-W (2007) Sharing of worldwide distributed carbohydrate-related digital resources: online connection of the Bacterial Carbohydrate Structure DataBase and GLYCOSCIENCES.de. Nucleic Acids Res 35:D280–D286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. http://www.glycosciences.de/sweetdb/

  7. Lundborg M, Widmalm G (2011) Structural analysis of glycans by NMR chemical shift prediction. Anal Chem 83:1514–1517

    Article  CAS  PubMed  Google Scholar 

  8. Lundborg M, Fontana C, Widmalm G (2011) Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy. Biomacromolecules 12:3851–3855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Jansson P-E, Stenutz R, Widmalm G (2006) Sequence determination of oligosaccharides and regular polysaccharides using NMR spectroscopy and a novel Web-based version of the computer program CASPER. Carbohydr Res 341:1003–1010

    Article  CAS  PubMed  Google Scholar 

  10. http://www.casper.organ.su.se/casper/

  11. Berger S, Braun S (2004) 200 and More NMR experiments. Wiley-VCH, Weinheim, 3rd expanded edition

    Google Scholar 

  12. Keeler J (2010) Understanding NMR spectroscopy, 2nd edn. Wiley, Chichester

    Google Scholar 

  13. Claridge TDW (1999) High-resolution NMR techniques in organic chemistry. Elsevier, Amsterdam

    Google Scholar 

  14. Jacobsen NE (2007) NMR spectroscopy explained: simplified theory, applications and examples for organic chemistry and structural biology. Wiley, Hoboken, NJ

    Book  Google Scholar 

  15. Gorenstein DG (1992) 31P NMR of DNA. Methods Enzymol 211:254–286

    Article  CAS  PubMed  Google Scholar 

  16. Michalik M, Hein M, Frank M (2000) NMR spectra of fluorinated carbohydrates. Carbohydr Res 327(1–2):185–218

    Article  CAS  PubMed  Google Scholar 

  17. Almond A, DeAngelis PL, Blundell CD (2005) Dynamics of hyaluronan oligosaccharides revealed by 15N relaxation. J Am Chem Soc 127:1086–1087

    Article  CAS  PubMed  Google Scholar 

  18. http://www.mestrelab.com

  19. http://www.bio.cam.ac.uk/azara/

  20. http://spin.niddk.nih.gov/NMRPipe/

  21. http://www.onemoonscientific.com/nmrview/summary.html

  22. http://www.ccpn.ac.uk/ccpn

  23. Goddard TD, Kneller DG. SPARKY 3, University of California, San Francisco

    Google Scholar 

  24. Vliegenhardt JFG, van Halbeek H, Dorland L (1981) The applicability of 500-MHz high-resolution 1H-NMR spectroscopy for the structure determination of carbohydrates derived from glycoproteins. Pure Appl Chem 53:45–77

    Google Scholar 

  25. Kamerling JP, Vliegenthart JFG (1992) High-resolution 1H-nuclear magnetic resonance spectroscopy of oligosaccharide-alditols released from mucin-type O-glycoproteins. In: Berliner LJ, Reuben J (eds) Biological magnetic resonance, vol 10. Springer, New York, NY, pp 1–94

    Google Scholar 

  26. Karplus M (1963) Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc 85(18):2870–2871

    Article  CAS  Google Scholar 

  27. Lemieux RU, Kullnig RK, Bernstein HJ, Schneider WG (1958) Configurational effects on the magnetic resonance spectra of six-membered ring compounds. J Am Chem Soc 80:6098–6105

    Article  CAS  Google Scholar 

  28. Jansson PE, Kenne L, Widmalm G (1987) Casper—a computerised approach to structure determination of polysaccharides using information from n.m.r. spectroscopy and simple chemical analyses. Carbohyd Res 168(1):67–77

    Article  CAS  Google Scholar 

  29. Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis. Wiley, New York, NY

    Google Scholar 

  30. Gronenborn AM, Clore GM (1985) Investigation of the solution structures of short nucleic acid fragments by means of nuclear overhauser enhancement measurements. Prog Nucl Magn Reson Spectrosc 17:1–32

    Article  CAS  Google Scholar 

  31. Bubb WA, Wright LC, Cagney M, Santangelo RT, Sorrell TC, Kuchel PW (1999) Heteronuclear NMR studies of metabolites produced by Cryptococcus neoformans in culture media: identification of possible virulence factors. Magn Reson Med 42:442–453

    Article  CAS  PubMed  Google Scholar 

  32. Bock K, Pedersen C, Heding H (1974) A 13C-NMR spectroscopic study of alpha- and beta-streptomycin. J Antibiot 27(2):139–140

    Article  CAS  PubMed  Google Scholar 

  33. Tvaroska I, Taravel FR (1995) Carbon-proton coupling constants in the conformational analysis of sugar molecules. Adv Carbohydr Chem Biochem 51:15–61

    Article  CAS  PubMed  Google Scholar 

  34. Podlasek CA, Wu J, Stripe WA, Bondo PB, Serianni AS (1995) [13C] Enriched methyl aldopyranosides: structural interpretations of 13C-1H spin-coupling constants and 1H chemical shifts. J Am Chem Soc 117:8635–8644

    Article  CAS  Google Scholar 

  35. Milton MJ, Harris R, Probert MA, Field RA, Homans SW (1998) New conformational constraints in isotopically (13C) enriched oligosaccharides. Glycobiology 8(2):147–153

    Article  CAS  PubMed  Google Scholar 

  36. Bubb WA, Urashima T, Fujiwara R, Shinnai T, Ariga H (1997) Structural characterisation of the exocellular polysaccharide produced by Streptococcus thermophilus OR 901. Carbohydr Res 301:41–50

    Article  CAS  PubMed  Google Scholar 

  37. Cano FH, Foces-Foces C, Jimenez-Barbero J, Alemany A, Bernabe M, Martin-Lomas M (1987) Experimental evidence of deviations from a Karplus-like relationship of vicinal carbon-proton coupling constants in some conformationally rigid carbohydrate derivatives. J Org Chem 52:3367–3372

    Article  CAS  Google Scholar 

  38. Tvaroska I, Hricovini M, Petrakova E (1989) An attempt to derive a new Karplus-type equation of vicinal proton-carbon coupling constants for C-O-C-H segments of bonded atoms. Carbohydr Res 189:359–362

    Article  CAS  Google Scholar 

  39. de Beer T, van Zuylen CW, Hard K, Boelens R, Kaptein R, Kamerling JP, Vliegenthart JF (1994) Rapid and simple approach for the NMR resonance assignment of the carbohydrate chains of an intact glycoprotein. Application of gradient-enhanced natural abundance 1H-13C HSQC and HSQC-TOCSY to the alpha-subunit of human chorionic gonadotropin. FEBS Lett 348(1):1–6

    Article  CAS  PubMed  Google Scholar 

  40. Kover KE, Hruby VJ, Uhrin D (1997) Sensitivity- and gradient-enhanced heteronuclear coupled/decoupled HSQC-TOCSY experiments for measuring long-range heteronuclear coupling constants. J Magn Reson 129(2):125–129

    Article  CAS  PubMed  Google Scholar 

  41. Lerner L, Bax A (1986) Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy. J Magn Reson 69:375–380

    CAS  Google Scholar 

  42. Williamson RT, Márquez BL, Gerwick WH (1999) Use of 1H-15N PEP-HSQC-TOCSY at natural abundance to facilitate the structure elucidation of naturally occurring peptides. Tetrahedron 55:2881–2888

    Article  CAS  Google Scholar 

  43. Brand T, Cabrita EJ, Berger S (2008) Theory and application of NMR diffusion studies. In: Webb GA (ed) Modern magnetic resonance. Springer, Dordrecht, pp 135–143

    Google Scholar 

  44. Groves P, Palczewska M, Molero MD, Batta G, Cañada FJ, Jiménez-Barbero J (2004) Protein molecular weight standards can compensate systematic errors in diffusion-ordered spectroscopy. Anal Biochem 331:395–397

    Article  CAS  PubMed  Google Scholar 

  45. Tian F, Bolon PJ, Prestegard JH (1999) Intensity-based measurement of homonuclear residual dipolar couplings from CT-COSY. J Am Chem Soc 1999(121):7712–7713

    Article  Google Scholar 

  46. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792

    Article  CAS  Google Scholar 

  47. Azurmendi H, Bush CA (2002) Tracking alignment from the moment of inertia tensor (TRAMITE) of biomolecules in neutral dilute liquid crystal solutions. J Am Chem Soc 124:2426–2427

    Article  CAS  PubMed  Google Scholar 

  48. Almond A, Axelsen JB (2002) Physical interpretation of residual dipolar couplings in neutral aligned media. J Am Chem Soc 124:9986–9987

    Article  CAS  PubMed  Google Scholar 

  49. Losonczi JA, Andrec M, Fircher MWF, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138:334–342

    Article  CAS  PubMed  Google Scholar 

  50. Zhuang T, Leffler H, Prestegard JH (2006) Enhancement of bound-state residual dipolar couplings: conformational analysis of lactose bound to Galectin-3. Protein Sci 2006(15):1780–1790

    Article  Google Scholar 

  51. Zhuang T, Lee HS, Imperiali B, Prestegard JH (2008) Structure determination of a Galectin-3-carbohydrate complex using paramagnetism-based NMR constraints. Protein Sci 17:220–1231

    Article  Google Scholar 

  52. Valafar H, Prestegard JH (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson 167:228–241

    Article  CAS  PubMed  Google Scholar 

  53. Lippens G, Wieruzeski JM, Talaga P, Bohin JP, Desvaux H (1996) Correlation between the chemical shift values and precise interglycosidic distance measurements in the cyclic glucan of Burkholderia solanacearum. J Biomol NMR 118:7227

    CAS  Google Scholar 

  54. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  55. Hricovini M, Torri G (1995) Dynamics in aqueous solutions of the pentasaccharide corresponding to the binding site of heparin for antithrombin III studied by NMR relaxation measurements. Carbohydr Res 268:159–175

    Article  CAS  PubMed  Google Scholar 

  56. Hardy BJ, Egan W, Widmalm G (1995) Conformational analysis of the disaccharide α-l-Rha p-(1 → 2)-α-l-Rha p-OMe: comparison of dynamics simulations with NMR experiments. Int J Biol Macromol 17–18:149–160

    Article  Google Scholar 

  57. Poveda A, Santamaría M, Bernabé M, Rivera A, Corzo J, Jiménez-Barbero J (1997) Solution conformation and dynamics of an extracellular polysaccharide isolated from Bradyrhyzobium as deduced from 1H-NMR off resonance ROESY and 13C-NMR relaxation measurements. Carbohydr Res 304:219–228

    Article  CAS  PubMed  Google Scholar 

  58. Angulo J, Hricovini M, Gairi M, Guerrini M, de Paz JL, Ojeda R, Martín-Lomas M, Niero PM (2005) Dynamic properties of biologically active synthetic heparin-like hexasaccharides. Glycobiology 15:1008–1015

    Article  CAS  PubMed  Google Scholar 

  59. Peng JW, Wagner G (1992) Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J Magn Reson 98:308–322

    CAS  Google Scholar 

  60. Kirschner KN, Yongye AB, Tschampel SM, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field: carbohydrates. J Comput Chem 29:622–655

    Article  CAS  PubMed  Google Scholar 

  61. http://www.glycam.com

  62. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS: fast, flexible, and free. J Chem Theory Comput 4:435–447

    Article  CAS  Google Scholar 

  63. Nilsson L (2008) Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations. J Comp Chem 30:1490–1498

    Article  Google Scholar 

  64. Kony D, Damm W, Stoll S, Van Gunsteren WF (2002) J Comp Chem 23(15):1416–1429

    Article  CAS  Google Scholar 

  65. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 111:8551

    Article  CAS  Google Scholar 

  66. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau F-Y (2011) R.E.D. server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39:W511–W517

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. http://q4md-forcefieldtools.org/REDS/

  68. AMBER9 Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9, University of California, San Francisco

    Google Scholar 

  69. SYBYL 8.0, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA

    Google Scholar 

  70. (2007) Maestro, version 8.0, New York, NY: Schrödinger, LLC

    Google Scholar 

  71. Torda AE, Scheek RM, Gunsteren WF (1989) Time-dependent distance restraints in molecular dynamics simulations. Chem Phys Lett 157:289–294

    Article  CAS  Google Scholar 

  72. Casu B, Reggiani M, Gallo GG, Vigevani A (1966) Hydrogen bonding and conformation of glucose and polyglucoses in dimethyl-sulphoxide solution. Tetrahedron 22:3061–3083

    Article  CAS  Google Scholar 

  73. Berger S, Diaz MD, Hawat C (1999) The solvation of carbohydrates in dimethylsulfoxide and water. Polish J Chem 73:193–197

    CAS  Google Scholar 

  74. Piotto M, Saudek V, Sklenár V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  CAS  PubMed  Google Scholar 

  75. Hwang T-L, Shaka AJ (1995) Water suppression that works. Excitation sculpting using WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson Ser A 112:275–279

    Article  CAS  Google Scholar 

  76. Prost E, Sizun P, Piotto M, Nuzillard J-M (2002) A simple scheme for the design of solvent-suppression pulses. J Magn Reson 159:76–81

    Article  CAS  PubMed  Google Scholar 

  77. Bax A (1985) A spatially selective composite 90° radiofrequency pulse. J Magn Reson 65:142–145

    Google Scholar 

  78. Ogg RJ, Kingsley PB, Taylor JS (1994) WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson Ser B 104:1–10

    Article  CAS  Google Scholar 

  79. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  CAS  PubMed  Google Scholar 

  80. Cavagnero S, Dyson HJ, Wright PE (1999) Improved low pH bicelle system for orienting macromolecules over a wide temperature range. J Biomol NMR 13:387–391

    Article  CAS  PubMed  Google Scholar 

  81. Prosser RS, Losonczi JA, Shiyanovskaya IV (1998) Use of a novel aqueous liquid crystalline medium for high-resolution NMR of macromolecules in solution. J Am Chem Soc 120:11010–11011

    Article  CAS  Google Scholar 

  82. Rucker M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 2000(122):7793–7797

    Article  Google Scholar 

  83. Jin L, Hricovini M, Deakin JA, Lyon M, Uhrín D (2009) Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin. Glycobiology 19:1185–1196

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Mallagaray A, Canales A, Domínguez G, Jiménez-Barbero J, Pérez-Castells J (2011) A rigid lanthanide binding tag for NMR structural analysis of carbohydrates. Chem Commun 47(25):7179–7181

    Article  CAS  Google Scholar 

  85. Erdèlyi M, d’Auvergne E, Navarro-Vázquez A, Leonov A, Griesinger C (2011) Dynamics of the glycosidic bond: conformational space of lactose. Chem Eur J 17:9668–9676

    Article  Google Scholar 

  86. Yamamoto S, Yamaguchi T, Erdélyi M, Griesinger C, Kato K (2011) Paramagnetic lanthanide tagging for NMR conformational analyses of N-linked oligosaccharides. Chemistry 17(34):9280–9282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Innovation of Spain grant CTQ2012-32025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Jiménez-Barbero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Díaz, D., Canales-Mayordomo, A., Cañada, F.J., Jiménez-Barbero, J. (2015). Solution Conformation of Carbohydrates: A View by Using NMR Assisted by Modeling. In: Lütteke, T., Frank, M. (eds) Glycoinformatics. Methods in Molecular Biology, vol 1273. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2343-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2343-4_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2342-7

  • Online ISBN: 978-1-4939-2343-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics