Skip to main content
Book cover

Rhodopsin pp 67–76Cite as

Functional Stability of Rhodopsin in a Bicelle System: Evaluating G Protein Activation by Rhodopsin in Bicelles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

Rhodopsin is a prototypical member of the G protein-coupled receptors (GPCRs). This photoreceptor is responsible for initiating the visual signaling transduction cascade upon interaction with its heterotrimeric G protein, transducin (Gt), after light activation. Like all transmembrane proteins, rhodopsin is embedded within a phospholipid bilayer. Many studies have proposed that the membrane composition of this bilayer is an important factor for receptor function during the activation process. Here we describe the methods and assays used to evaluate the function of purified and reconstituted rhodopsin in bicelles.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Palczewski K (2006) G protein-coupled receptor rhodopsin. Annu Rev Biochem 75:743–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Ostermeier C, Iwata S, Ludwig B et al (1995) Fv fragment-mediated crystallization of the membrane protein bacterial cytochrome c oxidase. Nat Struct Biol 2:842–846

    Article  CAS  PubMed  Google Scholar 

  3. Fung JJ, Deupi X, Pardo L et al (2009) Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer. EMBO J 28:3315–3328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Litman BJ, Niu SL, Polozova A et al (2001) The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J Mol Neurosci 16:237–242, discussion 279–284

    Article  CAS  PubMed  Google Scholar 

  5. Jastrzebska B, Goc A, Golczak M et al (2009) Phospholipids are needed for the proper formation, stability, and function of the photoactivated rhodopsin-transducin complex. Biochemistry 48:5159–5170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Bayburt TH, Leitz AJ, Xie G et al (2007) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282:14875–14881

    Article  CAS  PubMed  Google Scholar 

  7. Luecke H, Schobert B, Stagno J et al (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105:16561–16565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Jastrzebska B, Golczak M, Fotiadis D et al (2009) Isolation and functional characterization of a stable complex between photoactivated rhodopsin and the G protein, transducin. FASEB J 23:371–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kaya AI, Thaker TM, Preininger AM et al (2011) Coupling efficiency of rhodopsin and transducin in bicelles. Biochemistry 50:3193–3203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sanders CR, Schwonek JP (1992) Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry 31:8898–8905

    Article  CAS  PubMed  Google Scholar 

  11. Sanders CR, Prosser RS (1998) Bicelles: a model membrane system for all seasons? Structure 6:1227–1234

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Su K, Guan X et al (2010) Assessing the size, stability, and utility of isotropically tumbling bicelle systems for structural biology. Biochim Biophys Acta 1798:482–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Glover KJ, Whiles JA, Wu G et al (2001) Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules. Biophys J 81:2163–2171

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Struppe J, Whiles JA, Vold RR (2000) Acidic phospholipid bicelles: a versatile model membrane system. Biophys J 78:281–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Struppe J, Komives EA, Taylor SS et al (1998) 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles. Biochemistry 37:15523–15527

    Article  CAS  PubMed  Google Scholar 

  16. Crowell KJ, Macdonald PM (1999) Surface charge response of the phosphatidylcholine head group in bilayered micelles from phosphorus and deuterium nuclear magnetic resonance. Biochim Biophys Acta 1416:21–30

    Article  CAS  PubMed  Google Scholar 

  17. Marcotte I, Dufourc EJ, Ouellet M et al (2003) Interaction of the neuropeptide met-enkephalin with zwitterionic and negatively charged bicelles as viewed by 31P and 2H solid-state NMR. Biophys J 85:328–339

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gibson NJ, Brown MF (1991) Role of phosphatidylserine in the MI-MII equilibrium of rhodopsin. Biochem Biophys Res Commun 176:915–921

    Article  CAS  PubMed  Google Scholar 

  19. Gibson NJ, Brown MF (1993) Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes. Biochemistry 32:2438–2454

    Article  CAS  PubMed  Google Scholar 

  20. Thaker TM, Kaya AI, Preininger AM et al (2012) Allosteric mechanisms of G protein-coupled receptor signaling: a structural perspective. Methods Mol Biol 796:133–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Aris L, Gilchrist A, Rens-Domiano S et al (2001) Structural requirements for the stabilization of metarhodopsin II by the C terminus of the a subunit of transducin. J Biol Chem 276:2333–2339

    Article  CAS  PubMed  Google Scholar 

  22. Oldham WM, Van Eps N, Preininger AM et al (2006) Mechanism of the receptor-catalyzed activation of heterotrimeric G proteins. Nat Struct Mol Biol 13:772–777

    Article  CAS  PubMed  Google Scholar 

  23. Mazzoni MR, Malinksi JA, Hamm HE (1991) Structural analysis of rod GTP-binding protein Gt. Limited proteolytic digestion pattern of Gt with four proteases defines monoclonal antibody epitope. J Biol Chem 266:14072–14081

    CAS  PubMed  Google Scholar 

  24. van Dam L, Karlsson G, Edwards K (2004) Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochim Biophys Acta 1664:241–256

    Article  PubMed  Google Scholar 

  25. van Dam L, Karlsson G, Edwards K (2006) Morphology of magnetically aligning DMPC/DHPC aggregates-perforated sheets, not disks. Langmuir 22:3280–3285

    Article  PubMed  Google Scholar 

  26. Faham S, Boulting GL, Massey EA et al (2005) Crystallization of bacteriorhodopsin from bicelle formulations at room temperature. Protein Sci 14:836–840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Prosser RS, Hwang JS, Vold RR (1998) Magnetically aligned phospholipid bilayers with positive ordering: a new model membrane system. Biophys J 74:2405–2418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi E. Hamm Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kaya, A.I., Iverson, T.M., Hamm, H.E. (2015). Functional Stability of Rhodopsin in a Bicelle System: Evaluating G Protein Activation by Rhodopsin in Bicelles. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics