Rhodopsin pp 391-410 | Cite as

Gene Therapy to Rescue Retinal Degeneration Caused by Mutations in Rhodopsin

  • Brian P. Rossmiller
  • Renee C. Ryals
  • Alfred S. LewinEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1271)


Retinal gene therapy has proven safe and at least partially successful in clinical trials and in numerous animal models. Gene therapy requires characterization of the progression of the disease and understanding of its genetic cause. Testing gene therapies usually requires an animal model that recapitulates the key features of the human disease, though photoreceptors and cells of the retinal pigment epithelium produced from patient-derived stem cells may provide an alternative test system for retinal gene therapy. Gene therapy also requires a delivery system that introduces the therapeutic gene to the correct cell type and does not cause unintended damage to the tissue. Current systems being tested in the eye are nanoparticles, pseudotyped lentiviruses, and adeno-associated virus (AAV) of various serotypes. Here, we describe the techniques of AAV vector design as well as the in vivo and ex vivo tests necessary for assessing the efficacy of retinal gene therapy to treat retinal degeneration caused by mutations in the rhodopsin gene.

Key words

Rhodopsin Subretinal injection Intravitreal injection Autosomal dominant retinitis pigmentosa Mouse model Adeno-associated virus Inverted terminal repeat Outer nuclear layer Electroretinography Optical coherence tomography 


  1. 1.
    Athanasiou D, Aguila M, Bevilacqua D et al (2013) The cell stress machinery and retinal degeneration. FEBS Lett 587:2008–2017CrossRefPubMedGoogle Scholar
  2. 2.
    Mendes HF, van der Spuy J, Chapple JP et al (2005) Mechanisms of cell death in rhodopsin retinitis pigmentosa: implications for therapy. Trends Mol Med 11:177–185CrossRefPubMedGoogle Scholar
  3. 3.
    Komeima K, Rogers BS, Lu L et al (2006) Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 103:11300–11305CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Bowne SJ, Sullivan LS, Koboldt DC et al (2011) Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest Ophthalmol Vis Sci 52:494–503CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Rossmiller B, Mao H, Lewin AS (2012) Gene therapy in animal models of autosomal dominant retinitis pigmentosa. Mol Vis 18:2479–2496PubMedCentralPubMedGoogle Scholar
  6. 6.
    Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20:999–1004CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 361:725–727CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Al-Saikhan FI (2013) The gene therapy revolution in ophthalmology. Saudi J Ophthalmol 27:107–111CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Alexander JJ, Hauswirth WW (2008) Adeno-associated viral vectors and the retina. Adv Exp Med Biol 613:121–128CrossRefPubMedGoogle Scholar
  11. 11.
    Trapani I, Colella P, Sommella A et al (2014) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6:194–211PubMedCentralPubMedGoogle Scholar
  12. 12.
    Ghosh A, Yue Y, Duan D (2011) Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum Gene Ther 22:77–83CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Ghosh A, Yue Y, Lai Y et al (2008) A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 16:124–130CrossRefPubMedGoogle Scholar
  14. 14.
    Ghosh A, Yue Y, Duan D (2006) Viral serotype and the transgene sequence influence overlapping adeno-associated viral (AAV) vector-mediated gene transfer in skeletal muscle. J Gene Med 8:298–305CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Greenwald DL, Cashman SM, Kumar-Singh R (2013) Mutation-independent rescue of a novel mouse model of Retinitis Pigmentosa. Gene Ther 20:425–434CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Mao H, Gorbatyuk MS, Rossmiller B et al (2012) Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Hum Gene Ther 23:356–366CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Millington-Ward S, Chadderton N, O’Reilly M et al (2011) Suppression and replacement gene therapy for autosomal dominant disease in a murine model of dominant retinitis pigmentosa. Mol Ther 19:642–649CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Mussolino C, Sanges D, Marrocco E et al (2011) Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med 3:118–128CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    McCarty DM (2008) Self-complementary AAV vectors; advances and applications. Mol Ther 16:1648–1656CrossRefPubMedGoogle Scholar
  20. 20.
    Kay CN, Ryals RC, Aslanidi GV et al (2013) Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 8:e62097CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Goto Y, Peachey NS, Ripps H et al (1995) Functional abnormalities in transgenic mice expressing a mutant rhodopsin gene. Invest Ophthalmol Vis Sci 36:62–71PubMedGoogle Scholar
  22. 22.
    Pennesi ME, Michaels KV, Magee SS et al (2012) Long-term characterization of retinal degeneration in rd1 and rd10 mice using spectral domain optical coherence tomography. Invest Ophthalmol Vis Sci 53:4644–4656CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Umino Y, Solessio E, Barlow RB (2008) Speed, spatial, and temporal tuning of rod and cone vision in mouse. J Neurosci 28:189–198CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Prusky GT, Alam NM, Beekman S et al (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45:4611–4616CrossRefPubMedGoogle Scholar
  25. 25.
    Mueller C, Flotte TR (2008) Clinical gene therapy using recombinant adeno-associated virus vectors. Gene Ther 15:858–863CrossRefPubMedGoogle Scholar
  26. 26.
    Grieger JC, Samulski RJ (2012) Adeno-associated virus vectorology, manufacturing, and clinical applications. Methods Enzymol 507:229–254CrossRefPubMedGoogle Scholar
  27. 27.
    Flannery JG, Zolotukhin S, Vaquero MI et al (1997) Efficient photoreceptor-targeted gene expression in vivo by recombinant adeno-associated virus. Proc Natl Acad Sci U S A 94:6916–6921CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Wang L, Blouin V, Brument N et al (2011) Production and purification of recombinant adeno-associated vectors. Methods Mol Biol 807:361–404CrossRefPubMedGoogle Scholar
  29. 29.
    Zolotukhin S, Potter M, Zolotukhin I et al (2002) Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods 28:158–167CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Brian P. Rossmiller
    • 1
  • Renee C. Ryals
    • 1
  • Alfred S. Lewin
    • 1
    Email author
  1. 1.Department of OpthalmologyUniversity of FloridaGainesvilleUSA

Personalised recommendations