Skip to main content

Rhodopsin Transient Complexes Investigated by Systems Biology Approaches

  • Protocol
  • First Online:
Rhodopsin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1271))

Abstract

The fast kinetics characterizing the phototransduction cascade in virtually any species require that rhodopsin (Rh) form transient molecular complexes with a multitude of other proteins. Isolating such transient interactions in vitro and in vivo is a challenging task, although understanding their dynamics is essential to fully understand Rh function. Here, an established bottom-up systems biology approach is summarized, which links individual biomolecular processes to the whole-cell response, namely, the light-dependent suppression of the photoreceptor dark current. The known biochemical interactions occurring in the phototransduction cascade are integrated into a comprehensive computational model that can be numerically simulated, making it possible to: (a) virtually follow the time course of transient complexes formed by Rh with other molecules, including the cognate G protein transducin (Gt), rhodopsin kinase (RK), and arrestin (Arr), and (b) focus on specific receptor states, including multiple phosphorylations and activity of the chromophore-free receptor (opsin, Ops). Successful predictions of retinal disease-associated states, such as those related to vitamin A deficiency and Leber congenital amaurosis, have been obtained with the methodology presented herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pugh EN Jr, Lamb TD (2000) Phototransduction in vertebrate rods and cones: molecular mechanisms of amplification, recovery and light adaptation. Elsevier Science B.V, New York

    Google Scholar 

  2. Dell'Orco D, Koch KW (2011) A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision. Biochem J 440:263–271

    Article  PubMed  Google Scholar 

  3. Komolov KE, Aguila M, Toledo D et al (2010) On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy. Anal Bioanal Chem 397:2967–2976

    Article  CAS  PubMed  Google Scholar 

  4. Komolov KE, Koch KW (2010) Application of surface plasmon resonance spectroscopy to study G-protein coupled receptor signalling. Methods Mol Biol 627:249–260

    Article  CAS  PubMed  Google Scholar 

  5. Komolov KE, Senin II, Kovaleva NA et al (2009) Mechanism of rhodopsin kinase regulation by recoverin. J Neurochem 110:72–79

    Article  CAS  PubMed  Google Scholar 

  6. Komolov KE, Senin II, Philippov PP et al (2006) Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system. Anal Chem 78:1228–1234

    Article  CAS  PubMed  Google Scholar 

  7. Dell’Orco D, Koch KW (2010) Systems biochemistry approaches to vertebrate phototransduction: towards a molecular understanding of disease. Biochem Soc Trans 38:1275–1280

    Article  PubMed  Google Scholar 

  8. Hamer RD (2000) Computational analysis of vertebrate phototransduction: combined quantitative and qualitative modeling of dark- and light-adapted responses in amphibian rods. Vis Neurosci 17:679–699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hamer RD, Nicholas SC, Tranchina D et al (2003) Multiple steps of phosphorylation of activated rhodopsin can account for the reproducibility of vertebrate rod single-photon responses. J Gen Physiol 122:419–444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hamer RD, Nicholas SC, Tranchina D et al (2005) Toward a unified model of vertebrate rod phototransduction. Vis Neurosci 22:417–436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kiel C, Vogt A, Campagna A et al (2011) Structural and functional protein network analyses predict novel signaling functions for rhodopsin. Mol Syst Biol 7:551

    Article  PubMed Central  PubMed  Google Scholar 

  12. Invergo BM, Dell’Orco D, Montanucci L et al (2014) A comprehensive model of the phototransduction cascade in mouse rod cells. Mol Biosyst 10:1481–1489

    Article  CAS  PubMed  Google Scholar 

  13. Dell’Orco D, Schmidt H, Mariani S et al (2009) Network-level analysis of light adaptation in rod cells under normal and altered conditions. Mol Biosyst 5:1232–1246

    Article  PubMed  Google Scholar 

  14. Invergo BM, Montanucci L, Koch KW et al (2013) Exploring the rate-limiting steps in visual phototransduction recovery by bottom-up kinetic modeling. Cell Commun Signal 11:36

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mariani S, Dell’Orco D, Felline A et al (2013) Network and atomistic simulations unveil the structural determinants of mutations linked to retinal diseases. PLoS Comput Biol 9:e1003207

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dell’Orco D, Sulmann S, Zagel P et al (2014) Impact of cone dystrophy-related mutations in GCAP1 on a kinetic model of phototransduction. Cell Mol Life Sci 71(19):3829–3840

    Google Scholar 

  17. Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 22:514–515

    Article  CAS  PubMed  Google Scholar 

  18. Koch KW, Dell’Orco D (2013) A calcium-relay mechanism in vertebrate phototransduction. ACS Chem Neurosci 4:909–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang Y, Rundell A (2006) Comparative study of parameter sensitivity analyses of the TCR-activated Erk-MAPK signalling pathway. Syst Biol (Stevenage) 153:201–211

    Article  CAS  Google Scholar 

  20. Zi Z, Zheng Y, Rundell AE et al (2008) SBML-SAT: a systems biology markup language (SBML) based sensitivity analysis tool. BMC Bioinformatics 9:342

    Article  PubMed Central  PubMed  Google Scholar 

  21. Dell’Orco D, Muller M, Koch KW (2010) Quantitative detection of conformational transitions in a calcium sensor protein by surface plasmon resonance. Chem Commun (Camb) 46:7316–7318

    Article  Google Scholar 

  22. Hindmarsh A, Brown P, Grant K (2005) SUNDIALS: suite of nonlinear and differential/algebraic equation solvers. ACM Trans Math Softw 31:363–396

    Article  Google Scholar 

  23. Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simulat 55:271–280

    Article  Google Scholar 

Download references

Acknowledgements

The methodology presented in this work is the result of a joint effort between several colleagues. I wish to acknowledge the fundamental contributions of Henning Schmidt, Brandon M. Invergo, Simona Mariani, Francesca Fanelli, and Karl-W. Koch. This work was supported by funds from the Italian Ministry of Research and Education, via departmental grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Dell’Orco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dell’Orco, D. (2015). Rhodopsin Transient Complexes Investigated by Systems Biology Approaches. In: Jastrzebska, B. (eds) Rhodopsin. Methods in Molecular Biology, vol 1271. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2330-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2330-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2329-8

  • Online ISBN: 978-1-4939-2330-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics