Skip to main content

Immunocytochemical Identification of Mammalian Differentiating Neurons in the Process of Adult Neurogenesis in the Hippocampal Dentate Gyrus

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

  • 1539 Accesses

Abstract

Adult neurogenesis is the capability of certain brain areas to generate new neurons which integrate into already established neuronal circuits within the adult brain. In most mammals , adult neurogenesis mainly occurs in the olfactory bulb and the hippocampal formation . Adult neurogenesis is thought to consist of several developmental stages that are characterized by morphological distinct cells, and these cells are known to express different markers . These markers and their application for immunohistochemical detection of the specific cell populations are introduced and discussed. Since estimation of the numbers of stained cells is mainly done in brain sections, methods for the quantification of the labeled cells are also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  2. Altman J, Das GD (1967) Postnatal neurogenesis in the guinea-pig. Nature 214:1098–1101

    Article  CAS  PubMed  Google Scholar 

  3. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    Article  CAS  PubMed  Google Scholar 

  4. Belluzzi O, Benedusi M, Ackman J et al (2003) Electrophysiological differentiation of new neurons in the olfactory bulb. J Neurosci 23:10411–10418

    CAS  PubMed  Google Scholar 

  5. Carlen M, Cassidy RM, Brismar H et al (2002) Functional integration of adult-born neurons. Curr Biol 12:606–608

    Article  CAS  PubMed  Google Scholar 

  6. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  CAS  PubMed  Google Scholar 

  7. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    CAS  PubMed  Google Scholar 

  8. Eckenhoff MF, Rakic P (1988) Nature and fate of proliferative cells in the hippocampal dentate gyrus during the life span of the rhesus monkey. J Neurosci 8:2729–2747

    CAS  PubMed  Google Scholar 

  9. Gould E, Reeves AJ, Fallah M et al (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci U S A 96:5263–5267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  11. Kempermann G (2011) Seven principles in the regulation of adult neurogenesis. Eur J Neurosci 33:1018–1024

    Article  PubMed  Google Scholar 

  12. von Bohlen Und Halbach O (2011) Immunohistological markers for proliferative events, gliogenesis, and neurogenesis within the adult hippocampus. Cell Tissue Res 345:1–19

    Article  Google Scholar 

  13. Zacchetti A, Van Garderen E, Teske E et al (2003) Validation of the use of proliferation markers in canine neoplastic and non-neoplastic tissues: comparison of KI-67 and proliferating cell nuclear antigen (PCNA) expression versus in vivo bromodeoxyuridine labelling by immunohistochemistry. APMIS 111:430–438

    Article  CAS  PubMed  Google Scholar 

  14. Linden MD, Torres FX, Kubus J et al (1992) Clinical application of morphologic and immunocytochemical assessments of cell proliferation. Am J Clin Pathol 97:S4–S13

    CAS  PubMed  Google Scholar 

  15. Taupin P (2007) BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 53:198–214

    Article  CAS  PubMed  Google Scholar 

  16. Lucassen PJ, Stumpel MW, Wang Q et al (2010) Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients. Neuropharmacology 58:940–949

    Article  CAS  PubMed  Google Scholar 

  17. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    CAS  PubMed  Google Scholar 

  18. Hodge RD, Kowalczyk TD, Wolf SA et al (2008) Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717

    Article  CAS  PubMed  Google Scholar 

  19. Lee JE, Hollenberg SM, Snider L et al (1995) Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844

    Article  CAS  PubMed  Google Scholar 

  20. Tamimi R, Steingrimsson E, Copeland NG et al (1996) The NEUROD gene maps to human chromosome 2q32 and mouse chromosome 2. Genomics 34:418–421

    Article  CAS  PubMed  Google Scholar 

  21. Couillard-Despres S, Winner B, Schaubeck S et al (2005) Doublecortin expression levels in adult brain reflect neurogenesis. Eur J Neurosci 21:1–14

    Article  PubMed  Google Scholar 

  22. Couillard-Despres S, Winner B, Karl C et al (2006) Targeted transgene expression in neuronal precursors: watching young neurons in the old brain. Eur J Neurosci 24:1535–1545

    Article  PubMed  Google Scholar 

  23. Peterson DA, Dickinson-Anson HA, Leppert JT et al (1999) Central neuronal loss and behavioral impairment in mice lacking neurotrophin receptor p75. J Comp Neurol 404:1–20

    Article  CAS  PubMed  Google Scholar 

  24. Hedreen JC (1998) What was wrong with the Abercrombie and empirical cell counting methods? A review. Anat Rec 250:373–380

    Article  CAS  PubMed  Google Scholar 

  25. Gundersen HJ, Bendtsen TF, Korbo L et al (1988) Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS 96:379–394

    Article  CAS  PubMed  Google Scholar 

  26. Cruz-Orive LM (1999) Precision of Cavalieri sections and slices with local errors. J Microsc 193:182–198

    Article  CAS  PubMed  Google Scholar 

  27. Hedreen JC (1998) Lost caps in histological counting methods. Anat Rec 250:366–372

    Article  CAS  PubMed  Google Scholar 

  28. Clarke PG (1992) How inaccurate is the Abercrombie correction factor for cell counts? Trends Neurosci 15:211–212

    Article  CAS  PubMed  Google Scholar 

  29. Schober A, Peterziel H, Von Bartheld CS et al (2007) GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis 25:378–391

    Article  CAS  PubMed  Google Scholar 

  30. von Bartheld C (2002) Counting particles in tissue sections: choices of methods and importance of calibration to minimize biases. Histol Histopathol 17:639–648

    Google Scholar 

  31. Vallieres L, Campbell IL, Gage FH et al (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492

    CAS  PubMed  Google Scholar 

  32. Abercrombie M (1946) Estimation of nuclear population from microtome sections. Anat Rec 94:239–247

    Article  CAS  PubMed  Google Scholar 

  33. West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61

    Article  CAS  PubMed  Google Scholar 

  34. Abusaad I, Mackay D, Zhao J et al (1999) Stereological estimation of the total number of neurons in the murine hippocampus using the optical disector. J Comp Neurol 408:560–566

    Article  CAS  PubMed  Google Scholar 

  35. Williams RW, von Bartheld CS, Rosen GD (2003) Counting cells in sectioned material: a suite of techniques, tools, and tips. Curr Protoc Neurosci Chapter 1: Unit 1 11

    Google Scholar 

  36. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the DFG (BO 1971/5-1; BO 1971/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver von Bohlen und Halbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

von Bohlen und Halbach, O. (2015). Immunocytochemical Identification of Mammalian Differentiating Neurons in the Process of Adult Neurogenesis in the Hippocampal Dentate Gyrus. In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics