Immunofluorescence and Genetic Fluorescent Labeling Techniques in the Drosophila Nervous System

Protocol
Part of the Neuromethods book series (NM, volume 101)

Abstract

Immunofluorescence (IF ) and genetic fluorescent labeling have become standard techniques to study the anatomy, function, and development of the Drosophila nervous system . This chapter provides an introduction into these techniques and is aimed to the novice in the field. Besides standard protocols for staining in whole mounts and vibratome sections , we give background information on useful antibodies and fly lines and provide guidelines on how to present IF data. We also introduce into the use of neuronal landmarks as a tool for precise and detailed anatomical descriptions.

Key words

Antibodies Fluorescent proteins Neuroanatomy Brain Ventral ganglion Drosophila melanogaster Drosophila larva 

Notes

Acknowledgment

The authors are grateful for research funding by the Deutsche Forschungsgemeinschaft within the collaborative research center SFB1047-B2 “Insect timing” and Susanne Klühspies, Pamela Menegazzi, and Dirk Rieger for critical and helpful comments on the manuscript. CW thanks especially Manfred Eckert and Dick Nässel for introducing him into immuno- and genetic labeling. MS thanks Hiromu Tanimoto and Irina Sinakevitch for sharing and teaching their immunohistochemistry protocols and knowledge.

References

  1. 1.
    Coons AH, Creech HJ, Jones RN et al (1942) The demonstration of pneumococcal antigen in tissues by the use of fluorescent antibody. J Immunol 45:159–170Google Scholar
  2. 2.
    Livett BG (1978) Immunohistochemical localization of nervous system-specific proteins and peptides. Int Rev Cytol S7:53–235Google Scholar
  3. 3.
    Hökfelt T, Johansson O, Ljungdahl A et al (1980) Peptidergic neurons. Nature 284:515–521CrossRefPubMedGoogle Scholar
  4. 4.
    Nässel DR (1996) Advances in the immunocytochemical localization of neuroactive substances in the insect nervous system. J Neurosci Methods 69:3–23CrossRefPubMedGoogle Scholar
  5. 5.
    Storm-Mathisen J, Leknes A, Bore A et al (1983) 1st visualization of glutamate and GABA in neurons by immunocytochemistry. Nature 301:517–520CrossRefPubMedGoogle Scholar
  6. 6.
    Eckert M, Gersch M, Wagner M (1971) Immunologische Untersuchungen des neuroendokrinen Systems von Insekten. II. Nachweis von Gewebeantigenen des Gehirns und der Corpora cardiaca von Periplaneta americana mit fluorescein- und peroxydasemarkierten Antikörpern. Zool Jb Physiol 76:29–35Google Scholar
  7. 7.
    Eckert M (1973) Immunologische Untersuchungen des neuroendokrinen Systems von Insekten. III. Immunochemische Markierung des neuroendokrinen Systems von Periplaneta americana durch Fraktionierung von gegen Retrocerebralkomplexextrakten gewonnenen Antiseren. Zool Jb Physiol 77:50–59Google Scholar
  8. 8.
    Desai L, Adams R, Pothier L et al (1972) Immunofluorescent labeling of chromosomes with antisera to histones and histone fractions. Exp Cell Res 70:468–471CrossRefPubMedGoogle Scholar
  9. 9.
    White K (1986) Neuropeptide-FMRFamide-like immunoreactivity in Drosophila: development and distribution. J Comp Neurol 247:430–438CrossRefPubMedGoogle Scholar
  10. 10.
    Valles AM, White K (1986) Development of serotonin-containing neurons in Drosophila mutants unable to synthesize serotonin. J Neurosci 6:1482–1491PubMedGoogle Scholar
  11. 11.
    Jan YN, Jan LY (1982) Genetic and immunological studies of the nervous system of Drosophila melanogaster. Neuropharmacology of insects. Ciba foundation symposium 88. Pitman, London, pp 221–239Google Scholar
  12. 12.
    Pages M, Jimenez F, Ferrus A et al (1983) Enkephalin-like immunoreactivity in Drosophila melanogaster. Neuropeptides 4:87–98CrossRefPubMedGoogle Scholar
  13. 13.
    Fujita SC (1988) Use of hybridoma libraries in the study of the genetics and development of Drosophila. Annu Rev Entomol 33:1–15CrossRefPubMedGoogle Scholar
  14. 14.
    Nässel DR, Ekström P (1997) Detection of neuropeptides by immunocytochemistry. Methods Mol Biol 72:71–101PubMedGoogle Scholar
  15. 15.
    Eckert M, Ude J (1983) Immunocytochemical techniques for the identification of peptidergic neurons. Functional neuroanatomy. Springer, Berlin, pp 268–301Google Scholar
  16. 16.
    Wu JS, Luo L (2006) A protocol for dissecting Drosophila melanogaster brains for live imaging or immunostaining. Nat Protoc 1:2110–2115CrossRefPubMedGoogle Scholar
  17. 17.
    Daul AL, Komori H, Lee C-Y (2010) Immunofluorescent staining of Drosophila larval brain tissue. Cold Spring Harb Protoc 2010:pdb.prot5460Google Scholar
  18. 18.
    Helfrich-Förster C (2007) Immunohistochemistry in Drosophila. Sections and whole mounts. Methods Mol Biol 362:533–547CrossRefPubMedGoogle Scholar
  19. 19.
    Ostrovsky A, Cachero S, Jefferis G (2010) Clonal analysis of olfaction in Drosophila: immunochemistry and imaging of fly brains. Cold Spring Harb Protoc 2013:342–346, pdb.prot071720Google Scholar
  20. 20.
    Hsiao H, Johnston RJ, Jukam D et al (2012) Dissection and immunohistochemistry of larval, pupal and adult Drosophila retinas. J Vis Exp 69:e4347PubMedGoogle Scholar
  21. 21.
    Feng Y, Ueda A, Wu C-F (2004) A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. J Neurogenet 18:377–402CrossRefPubMedGoogle Scholar
  22. 22.
    Jan LY, Jan YN (1976) Properties of the larval neuromuscular junction in Drosophila melanogaster. J Physiol 262:189–214CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Hofbauer A, Ebel T, Waltenspiel B et al (2009) The Wuerzburg hybridoma library against Drosophila brain. J Neurogenet 23:78–91CrossRefPubMedGoogle Scholar
  24. 24.
    Sinakevitch I, Strausfeld NJ (2006) Comparison of octopamine-like immunoreactivity in the brains of the fruit fly and blow fly. J Comp Neurol 494:460–475CrossRefPubMedGoogle Scholar
  25. 25.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  26. 26.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi: 10.1038/nmeth.2019 CrossRefPubMedGoogle Scholar
  27. 27.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  28. 28.
    Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709CrossRefPubMedGoogle Scholar
  29. 29.
    Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Ramaekers A, Quan X, Hassan BA (2012) Genetically encoded markers for Drosophila neuroanatomy. Neuromethods 69:49–59CrossRefGoogle Scholar
  31. 31.
    Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230CrossRefPubMedCentralPubMedGoogle Scholar
  32. 32.
    Hadjieconomou D, Rotkopf S, Alexandre C et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266CrossRefPubMedGoogle Scholar
  33. 33.
    Shimosako N, Hadjieconomou D, Salecker I (2014) Flybow to dissect circuit assembly in the Drosophila brain. Methods Mol Biol 1082:57–69CrossRefPubMedGoogle Scholar
  34. 34.
    Hampel S, Chung P, McKellar CE et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Wang JW, Wong AM, Flores J et al (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282CrossRefPubMedGoogle Scholar
  36. 36.
    Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461CrossRefPubMedGoogle Scholar
  37. 37.
    Kao C-F, Lee T (2012) In vivo single cell labeling techniques. Neuromethods 69:91–124CrossRefGoogle Scholar
  38. 38.
    Bohm RA, Welch WP, Goodnight LK et al (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A 107:16378–16383CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Luan H, Peabody NC, Vinson CR et al (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Diegelmann S, Fiala A, Leibold C et al (2002) Transgenic flies expressing the fluorescence calcium sensor Cameleon 2.1 under UAS control. Genesis 34:95–98CrossRefPubMedGoogle Scholar
  41. 41.
    Wagh DA, Rasse TM, Asan E et al (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844CrossRefPubMedGoogle Scholar
  42. 42.
    Klagges BR, Heimbeck G, Godenschwege TA et al (1996) Invertebrate synapsins: a single gene codes for several isoforms in Drosophila. J Neurosci 16:3154–3165PubMedGoogle Scholar
  43. 43.
    Parnas D, Haghighi AP, Fetter RD et al (2001) Regulation of postsynaptic structure and protein localization by the Rho-type guanine nucleotide exchange factor dPix. Neuron 32:415–424CrossRefPubMedGoogle Scholar
  44. 44.
    Shinomiya K, Matsuda K, Oishi T et al (2011) Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons. J Comp Neurol 519:807–833CrossRefPubMedGoogle Scholar
  45. 45.
    Ito K, Shinomiya K, Ito M et al (2014) A systematic nomenclature for the insect brain. Neuron 81:755–765CrossRefPubMedGoogle Scholar
  46. 46.
    Chiang A-S, Lin C-Y, Chuang C-C et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in drosophila at single-cell resolution. Curr Biol 21:1–11CrossRefPubMedGoogle Scholar
  47. 47.
    Yasuyama K, Salvaterra PM (1999) Localization of choline acetyltransferase-expressing neurons in Drosophila nervous system. Microsc Res Tech 45:65–79CrossRefPubMedGoogle Scholar
  48. 48.
    Younossi-Hartenstein A, Salvaterra PM, Hartenstein V (2003) Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa. J Comp Neurol 455:435–450CrossRefPubMedGoogle Scholar
  49. 49.
    Selcho M, Pauls D, Han K-A et al (2009) The role of dopamine in Drosophila larval classical olfactory conditioning. PLoS One 4:e5897CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Landgraf M, Sánchez-Soriano N, Technau GM et al (2003) Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. Dev Biol 260:207–225CrossRefPubMedGoogle Scholar
  51. 51.
    Vömel M, Wegener C (2008) Neuroarchitecture of aminergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 3:e1848CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Nassif C, Noveen A, Hartenstein V (2003) Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 455:417–434CrossRefPubMedGoogle Scholar
  53. 53.
    Ito K (2003) Cautionary observations on preparing and interpreting brain images using molecular biology-based staining techniques. Microsc Res Tech 62:170–186CrossRefPubMedGoogle Scholar
  54. 54.
    Milyaev N, Osumi-Sutherland D, Reeve S et al (2012) The virtual fly brain browser and query interface. Bioinformatics 28:411–415CrossRefPubMedGoogle Scholar
  55. 55.
    Selcho M, Pauls D, el Jundi B et al (2012) The role of octopamine and tyramine in Drosophila larval locomotion. J Comp Neurol 520:3764–3785CrossRefPubMedGoogle Scholar
  56. 56.
    Pfeiffer BD, Ngo T-TB, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Ritzenthaler S, Suzuki E, Chiba A (2000) Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 3:1012–1017CrossRefPubMedGoogle Scholar
  58. 58.
    Robertson K, Mergliano J, Minden JS (2003) Dissecting Drosophila embryonic brain development using photoactivated gene expression. Dev Biol 260:124–137CrossRefPubMedGoogle Scholar
  59. 59.
    Zhang YQ, Rodesch CK, Broadie K (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34:142–145CrossRefPubMedGoogle Scholar
  60. 60.
    Estes PS, Ho GL, Narayanan R et al (2000) Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin-green fluorescent protein chimera in vivo. J Neurogenet 13:233–255CrossRefPubMedGoogle Scholar
  61. 61.
    Rolls MM, Satoh D, Clyne PJ et al (2007) Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev 2:7CrossRefPubMedCentralPubMedGoogle Scholar
  62. 62.
    Schmid A, Hallermann S, Kittel RJ et al (2008) Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nat Neurosci 11:659–666CrossRefPubMedGoogle Scholar
  63. 63.
    Owald D, Fouquet W, Schmidt M et al (2010) A Syd-1 homologue regulates pre- and postsynaptic maturation in Drosophila. J Cell Biol 188:565–579CrossRefPubMedCentralPubMedGoogle Scholar
  64. 64.
    Nicolaï LJJ, Ramaekers A, Raemaekers T et al (2010) Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci U S A 107:20553–20558CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Wang J, Ma X, Yang JS et al (2004) Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43:663–672CrossRefPubMedGoogle Scholar
  66. 66.
    Leiss F, Koper E, Hein I et al (2009) Characterization of dendritic spines in the Drosophila central nervous system. Dev Neurobiol 69:221–234CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Neurobiology and Genetics, Theodor-Boveri-Institute, BiocenterUniversity of WürzburgWürzburgGermany

Personalised recommendations