Skip to main content

Combined Immunochemistry and Live Imaging of Fluorescent Protein Expressing Neurons in Mouse Brain

  • Protocol
  • First Online:
Immunocytochemistry and Related Techniques

Part of the book series: Neuromethods ((NM,volume 101))

Abstract

The use of transgenic mice expressing fluorescent proteins to report a specific protein or to identify specific groups of neurons in the brain is revolutionizing many different aspects of neuroscience. Here we use an example of a GFP-expressing reporter mouse from the GENSAT project that allows identification of a specific group of neurons in the mouse cortex. Live GFP detection facilitates identification of the neurons for whole-cell patch clamp electrophysiological recording to probe their functional properties. Post hoc immunohistochemistry allows specific reconstruction of the shape of the recorded neuron; this together with the detection of other co-expressed proteins helps confirm the functional identity of specific neuron types. Approaches such as these are beginning to progress the major task of untangling the complexity of a variety of brain circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller MN, Okaty BW, Nelson SB (2008) Region-specific spike-frequency acceleration in layer 5 pyramidal neurons mediated by Kv1 subunits. J Neurosci 28:13716–13726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Yu J, Anderson CT, Kiritani T et al (2008) Local-circuit phenotypes of layer 5 neurons in motor-frontal cortex of YFP-H mice. Front Neural Circuits 2:6

    Article  PubMed Central  PubMed  Google Scholar 

  3. Porrero C, Rubio-Garrido P, Avendaño C et al (2010) Mapping of fluorescent protein- expressing neurons and axon pathways in adult and developing Thy-eYFP-H transgenic mice. Brain Res 1345:59–72

    Article  CAS  PubMed  Google Scholar 

  4. Akemann W, Zhong Y-M, Ichinohe N et al (2004) Transgenic mice expressing a fluorescent in vivo label in a distinct subpopulation of neocortical layer 5 pyramidal cells. J Comp Neurol 480:72–88

    Article  PubMed  Google Scholar 

  5. Uusisaari M, Knöpfel T (2010) GlyT2+ neurons in the lateral cerebellar nucleus. Cerebellum 9:42–55

    Article  PubMed Central  PubMed  Google Scholar 

  6. Groh A, Meyer HS, Schmidt EF et al (2009) Cell-type specific properties of pyramidal neurons in neocortex underlying a layout that is modifiable depending on the cortical area. Cereb Cortex 20:826–836

    Article  PubMed  Google Scholar 

  7. Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7:483

    Article  CAS  PubMed  Google Scholar 

  8. Arlotta P, Molyneaux BJ, Chen J et al (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45:207–221

    Article  CAS  PubMed  Google Scholar 

  9. Chen B, Schaevitz LR, McConnell SK (2005) Fezl regulates the differentiation and axon targeting of layer 5 subcortical projection neurons in cerebral cortex. Proc Natl Acad Sci U S A 102:17184–17189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Chen J-G, Rašin M-R, Kwan KY et al (2005) Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc Natl Acad Sci U S A 102:17792–17797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Molyneaux BJ, Arlotta P, Hirata T et al (2005) Fezl is required for the birth and specification of corticospinal motor neurons. Neuron 47:817–831

    Article  CAS  PubMed  Google Scholar 

  12. Molyneaux BJ, Arlotta P, Menezes JRL et al (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437

    Article  CAS  PubMed  Google Scholar 

  13. Leone DP, Srinivasan K, Chen B et al (2008) The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18:28–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nelson SB, Sugino K, Hempel CM (2006) The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci 29:339–345

    Article  CAS  PubMed  Google Scholar 

  15. Rouaux C, Bhai S, Arlotta P (2012) Programming and reprogramming neuronal subtypes in the central nervous system. Dev Neurobiol 72:1085–1098

    Article  PubMed Central  PubMed  Google Scholar 

  16. Özdinler PH, Benn S, Yamamoto TH et al (2011) Corticospinal motor neurons and related subcerebral projection neurons undergo early and specific neurodegeneration in hSOD1G93A transgenic ALS mice. J Neurosci 31:4166–4177

    Article  PubMed Central  PubMed  Google Scholar 

  17. Franklin K, Paxinos G (2001) The mouse brain in stereotaxic coordinates, 2nd edn. London Academic Press, San Diego

    Google Scholar 

  18. Anderson CT, Sheets PL, Kiritani T et al (2010) Sublayer-specific microcircuits of corticospinal and corticostriatal neurons in motor cortex. Nat Neurosci 13:739–744

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Meijering E, Jacob M, Sarria JCF et al (2004) Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry A 58A:167–176

    Article  Google Scholar 

  20. Chen B, Wang SS, Hattox AM et al (2008) The Fezf2-Ctip2 genetic pathway regulates the fate choice of subcortical projection neurons in the developing cerebral cortex. Proc Natl Acad Sci U S A 105:11382–11387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Alcamo EA, Chirivella L, Dautzenberg M et al (2008) Satb2 regulates callosal projection neuron identity in the developing cerebral cortex. Neuron 57:364–377

    Article  CAS  PubMed  Google Scholar 

  22. Britanova O, de Juan Romero C, Cheung A et al (2008) Satb2 is a postmitotic determinant for upper-layer neuron specification in the neocortex. Neuron 57:378–392

    Article  CAS  PubMed  Google Scholar 

  23. Han W, Kwan KY, Shim S (2011) TBR1 directly represses Fezf2 to control the laminar origin and development of the corticospinal tract. Proc Natl Acad Sci U S A 108:3041–3046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. McKenna WL, Betancourt J, Larkin KA et al (2011) Tbr1 and Fezf2 regulate alternate corticofugal neuronal identities during neocortical development. J Neurosci 31:549–564

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tantirigama MLS, Oswald MJ, Duynstee C et al (2014) Expression of the developmental transcription factor Fezf2 identifies a distinct subpopulation of layer 5 intratelencephalic-projection neurons in mature mouse motor cortex. J Neurosci 34(12):4303–4308

    Article  CAS  PubMed  Google Scholar 

  26. Dombeck DA, Harvey CD, Tian L et al (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Muto A, Ohkura M, Kotani T et al (2011) Genetic visualization with an improved GCaMP calcium indicator reveals spatiotemporal activation of the spinal motor neurons in zebrafish. Proc Natl Acad Sci U S A 108:5425–5430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Akemann W, Mutoh H, Perron A (2010) Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Nat Methods 7:643–649

    Article  CAS  PubMed  Google Scholar 

  29. Akemann W, Mutoh H, Perron A (2012) Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J Neurophysiol 108:2323–2337

    Article  CAS  PubMed  Google Scholar 

  30. Knöpfel T (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 13:687–700

    PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Marsden Fund Council from Government funding, administered by the Royal Society of New Zealand. M.T. is the recipient of a Department of Physiology, University of Otago PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knöpfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Empson, R.M., Tantirigama, M.L.S., Oswald, M.J., Hughes, S.M., Knöpfel, T. (2015). Combined Immunochemistry and Live Imaging of Fluorescent Protein Expressing Neurons in Mouse Brain. In: Merighi, A., Lossi, L. (eds) Immunocytochemistry and Related Techniques. Neuromethods, vol 101. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2313-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2313-7_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2312-0

  • Online ISBN: 978-1-4939-2313-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics