Skip to main content

Targeted Gene Therapy for Ischemic Stroke

  • Protocol
  • First Online:
  • 1182 Accesses

Part of the book series: Neuromethods ((NM,volume 98))

Abstract

Exogenous delivery of angiogenic and neuroprotective genes has been shown to enhance innate compensatory responses after ischemic injury. However, there are certain barriers in translating gene-based therapy to the clinical setting. For example, systemic delivery of genes into the brain is prevented by the blood–brain barrier (BBB); intraventricular delivery results in nonspecific distribution and gene expression; and stereotactic injection of vectors into the ischemic penumbra requires an invasive procedure that can cause additional damage. This chapter describes an adeno-associated viral (AAV) vector with two primary attributes that have the potential to overcome these problems. First, the vector contains hypoxia response elements (HREs) that restrict therapeutic gene expression to ischemic tissue. Second, AAV serotype 9 (AAV9) effectively penetrates the BBB, enabling intravenous administration. This chapter also illustrates the methods of constructing AAV vectors with hypoxia-inducible gene expression, generating the mouse permanent distal middle cerebral artery occlusion (pMCAO) model, standard assays to analyze brain injury and gene transfer, and effective behavior tests for the pMCAO model.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Greenberg DA, Jin K (2005) From angiogenesis to neuropathology. Nature 438:954–959

    Article  CAS  PubMed  Google Scholar 

  2. Simons M, Ware JA (2003) Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov 2:863–871

    Article  CAS  PubMed  Google Scholar 

  3. Wei L, Cui L, Snider BJ et al (2005) Transplantation of embryonic stem cells overexpressing Bcl-2 promotes functional recovery after transient cerebral ischemia. Neurobiol Dis 19:183–193

    Article  CAS  PubMed  Google Scholar 

  4. Shen F, Fan Y, Su H et al (2008) Adeno-associated viral vector-mediated hypoxia-regulated VEGF factor gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 15:30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen F, Walker EJ, Jiang L et al (2011) Coexpression of angiopoietin1 with VEGF increases the structural integrity of the blood-brain barrier and reduces atrophy volume. J Cereb Blood Flow Metab 31:2343–2351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zeng L, He X, Wang Y et al (2014) MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther 21:37–43

    Article  CAS  PubMed  Google Scholar 

  7. An S, Kuang Y, Shen T et al (2013) Brain-targeting delivery for RNAi neuroprotection against cerebral ischemia reperfusion injury. Biomaterials 34:8949–8959

    Article  CAS  PubMed  Google Scholar 

  8. Tang Y, Li Y, Lin X et al (2014) Stimulation of cerebral angiogenesis by gene delivery. Methods Mol Biol 1135:317–329

    Article  PubMed  Google Scholar 

  9. Springer ML, Chen AS, Kraft PE et al (1998) VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 2:549–558

    Article  CAS  PubMed  Google Scholar 

  10. Lee RJ, Springer ML, Blanco-Bose WE et al (2000) VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation 102:898–901

    Article  CAS  PubMed  Google Scholar 

  11. Schwarz ER, Speakman MT, Patterson M et al (2000) Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat—angiogenesis and angioma formation. J Am Coll Cardiol 35:1323–1330

    Article  CAS  PubMed  Google Scholar 

  12. Bohl D, Salvetti A, Moullier P et al (1998) Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 92:1512–1517

    CAS  PubMed  Google Scholar 

  13. Hofmann A, Nolan GP, Blau HM (1996) Rapid retroviral delivery of tetracycline-inducible genes in a single autoregulatory cassette. Proc Natl Acad Sci U S A 93:5185–5190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bohl D, Naffakh N, Heard JM (1997) Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 3:299–305

    Article  CAS  PubMed  Google Scholar 

  15. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, O’Malley BW Jr, Tsai SY et al (1994) A regulatory system for use in gene transfer. Proc Natl Acad Sci U S A 91:8180–8184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blau HM, Rossi FM (1999) Tet B or not tet B: advances in tetracycline-inducible gene expression. Proc Natl Acad Sci U S A 96:797–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rossi FM, Guicherit OM, Spicher A et al (1998) Tetracycline-regulatable factors with distinct dimerization domains allow reversible growth inhibition by p16. Nat Genet 20:389–393

    Article  CAS  PubMed  Google Scholar 

  19. Kringstein AM, Rossi FM, Hofmann A et al (1998) Graded transcriptional response to different concentrations of a single transactivator. Proc Natl Acad Sci U S A 95:13670–13675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vanrell L, Di Scala M, Blanco L et al (2011) Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 19:1245–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang GL, Jiang BH, Rue EA et al (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92:5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GL, Semenza GL (1995) Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270:1230–1237

    Article  CAS  PubMed  Google Scholar 

  23. Huang LE, Gu J, Schau M et al (1998) Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 95:7987–7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang BH, Rue E, Wang GL et al (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271:17771–17778

    Article  CAS  PubMed  Google Scholar 

  25. Shen F, Su H, Liu W et al (2006) Recombinant adeno-associated viral vector encoding human VEGF165 induces neomicrovessel formation in the adult mouse brain. Front Biosci 11:3190–3198

    Article  CAS  PubMed  Google Scholar 

  26. Su H, Arakawa-Hoyt J, Kan YW (2002) Adeno-associated viral vector-mediated hypoxia response element-regulated gene expression in mouse ischemic heart model. Proc Natl Acad Sci U S A 99:9480–9485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaplitt MG, Leone P, Samulski RJ et al (1994) Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 8:148–154

    Article  CAS  PubMed  Google Scholar 

  28. McCown TJ, Xiao X, Li J et al (1996) Differential and persistent expression patterns of CNS gene transfer by an adeno-associated virus (AAV) vector. Brain Res 713:99–107

    Article  CAS  PubMed  Google Scholar 

  29. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12:316–328

    Article  CAS  PubMed  Google Scholar 

  30. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 7:33–40

    Article  CAS  PubMed  Google Scholar 

  31. Kells AP, Fong DM, Dragunow M et al (2004) AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 9:682–688

    Article  CAS  PubMed  Google Scholar 

  32. Kirik D, Rosenblad C, Bjorklund A et al (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20:4686–4700

    CAS  PubMed  Google Scholar 

  33. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8:1248–1254

    Article  CAS  PubMed  Google Scholar 

  34. Manfredsson FP, Rising AC, Mandel RJ (2009) AAV9: a potential blood-brain barrier buster. Mol Ther 17:403–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Foust KD, Nurre E, Montgomery CL et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27:59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duque S, Joussemet B, Riviere C et al (2009) Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther 17:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gray SJ, Matagne V, Bachaboina L et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19:1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shen F, Kuo R, Milon-Camus M et al (2013) Intravenous delivery of adeno-associated viral vector serotype 9 mediates effective gene expression in ischemic stroke lesion and brain angiogenic foci. Stroke 44:252–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xiao PJ, Lentz TB, Samulski RJ (2012) Recombinant adeno-associated virus: clinical application and development as a gene-therapy vector. Ther Deliv 3:835–856

    Article  CAS  PubMed  Google Scholar 

  40. Smith AJ, Bainbridge JW, Ali RR (2012) Gene supplementation therapy for recessive forms of inherited retinal dystrophies. Gene Ther 19:154–161

    Article  CAS  PubMed  Google Scholar 

  41. Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacobson SG, Cideciyan AV, Ratnakaram R et al (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Banin E, Bandah-Rozenfeld D, Obolensky A et al (2010) Molecular anthropology meets genetic medicine to treat blindness in the North African Jewish population: human gene therapy initiated in Israel. Hum Gene Ther 21:1749–1757

    Article  CAS  PubMed  Google Scholar 

  44. Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20:999–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Haunstetter A, Izumo S (1998) Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129

    Article  CAS  PubMed  Google Scholar 

  46. Maguire AM, High KA, Auricchio A et al (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605

    Article  CAS  PubMed  Google Scholar 

  47. Bainbridge JW, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239

    Article  CAS  PubMed  Google Scholar 

  48. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hajjar RJ, Zsebo K, Deckelbaum L et al (2008) Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14:355–367

    Article  CAS  PubMed  Google Scholar 

  50. Bowles DE, McPhee SW, Li C et al (2012) Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther 20:443–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Miyagoe-Suzuki Y, Takeda S (2010) Gene therapy for muscle disease. Exp Cell Res 316:3087–3092

    Article  CAS  PubMed  Google Scholar 

  52. DiPrimio N, McPhee SW, Samulski RJ (2010) Adeno-associated virus for the treatment of muscle diseases: toward clinical trials. Curr Opin Mol Ther 12:553–560

    CAS  PubMed  Google Scholar 

  53. Herzog RW, Cao O, Srivastava A (2010) Two decades of clinical gene therapy—success is finally mounting. Discov Med 9:105–111

    PubMed  PubMed Central  Google Scholar 

  54. Jarraya B, Boulet S, Ralph GS et al (2009) Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Sci Transl Med 1:2ra4

    Article  PubMed  Google Scholar 

  55. Muramatsu S, Fujimoto K, Kato S et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Christine CW, Starr PA, Larson PS et al (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eberling JL, Jagust WJ, Christine CW et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983

    Article  CAS  PubMed  Google Scholar 

  58. Nathwani AC, Tuddenham EG, Rangarajan S et al (2011) Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 365:2357–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kay MA, Manno CS, Ragni MV et al (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24:257–261

    Article  CAS  PubMed  Google Scholar 

  60. High KA (2001) AAV-mediated gene transfer for hemophilia. Ann N Y Acad Sci 953:64–74

    Article  CAS  PubMed  Google Scholar 

  61. Pollack A (2012) European agency backs approval of a gene therapy. New York Times, New York edition 21 Jul, Sect. B (Health), p. B1

    Google Scholar 

  62. Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang GL, Semenza GL (1993) General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A 90:4304–4308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ruan H, Su H, Hu L et al (2001) A hypoxia-regulated adeno-associated virus vector for cancer-specific gene therapy. Neoplasia 3:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pachori AS, Melo LG, Hart ML et al (2004) Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury. Proc Natl Acad Sci U S A 101:12282–12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shibata T, Giaccia AJ, Brown JM (2000) Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Ther 7:493–498

    Article  CAS  PubMed  Google Scholar 

  68. Gao GP, Alvira MR, Wang L et al (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A 99:11854–11859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rutledge EA, Halbert CL, Russell DW (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 72:309–319

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Muramatsu S, Mizukami H, Young NS et al (1996) Nucleotide sequencing and generation of an infectious clone of adeno-associated virus 3. Virology 221:208–217

    Article  CAS  PubMed  Google Scholar 

  71. Chiorini JA, Yang L, Liu Y et al (1997) Cloning of adeno-associated virus type 4 (AAV4) and generation of recombinant AAV4 particles. J Virol 71:6823–6833

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chiorini JA, Kim F, Yang L et al (1999) Cloning and characterization of adeno-associated virus type 5. J Virol 73:1309–1319

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Xiao W, Chirmule N, Berta SC et al (1999) Gene therapy vectors based on adeno-associated virus type 1. J Virol 73:3994–4003

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang L, Schallert T, Zhang ZG et al (2002) A test for detecting long-term sensorimotor dysfunction in the mouse after focal cerebral ischemia. J Neurosci Methods 117:207–214

    Article  PubMed  Google Scholar 

  75. Bouet V, Freret T, Toutain J et al (2007) Sensorimotor and cognitive deficits after transient middle cerebral artery occlusion in the mouse. Exp Neurol 203:555–567

    Article  PubMed  Google Scholar 

  76. Pang L, Ye W, Che XM et al (2001) Reduction of inflammatory response in the mouse brain with adenoviral-mediated transforming growth factor-ss1 expression. Stroke 32:544–552

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Su M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shen, F., Su, H. (2015). Targeted Gene Therapy for Ischemic Stroke. In: Bo, X., Verhaagen, J. (eds) Gene Delivery and Therapy for Neurological Disorders. Neuromethods, vol 98. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2306-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2306-9_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2305-2

  • Online ISBN: 978-1-4939-2306-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics