Gene Therapy Approaches to Promoting Axonal Regeneration After Spinal Cord Injury

Protocol
Part of the Neuromethods book series (NM, volume 98)

Abstract

Traumatic spinal cord injury is a devastating medical condition that still lacks any effective treatment. Studies on the pathological processes of spinal cord injury and neural repair indicate that the two main obstacles that prevent successful axonal regeneration and functional recovery are the weak intrinsic regenerative capacity of the neurons and the presence of several types of inhibitory molecules in the central nervous system (CNS). Various strategies have been derived and tested to elevate the regenerative status of injured neurons in the CNS or block the inhibitory molecules. Gene therapy approaches have been viewed as the ideal means to treat spinal cord injured patients as they can achieve long-term and localized delivery of therapeutic molecules in the CNS. Ex vivo gene delivery offers the additional advantage of providing cellular support for regenerating axons. In this chapter, we summarize the latest studies on viral vector-mediated gene deliveries in animal models of spinal cord injury. Most of the studies reported so far are aimed at delivery of molecules that prevent cell death, or increase intrinsic regenerating state of injured neurons, or modify the CNS environment to make it permissive for axon growth. We also provide detailed protocols used in our lab on gene therapy approaches in promoting axonal regeneration and functional recovery in three animal models.

Key words

Gene therapy Spinal cord injury Axonal regeneration Cell therapy Neurotrophic factors Lentiviral vector 

Notes

Acknowledgements

We thank the Wellcome Trust, International Spinal Research Trust, Barts and the London Charity, the Royal Society, and Stryker for their support of our research described in this chapter.

References

  1. 1.
    Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57PubMedCrossRefGoogle Scholar
  2. 2.
    Sun F, He Z (2010) Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin Neurobiol 20:510–518PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Yoon C, Tuszynski MH (2012) Frontiers of spinal cord and spine repair: experimental approaches for repair of spinal cord injury. Adv Exp Med Biol 760:1–15PubMedCrossRefGoogle Scholar
  4. 4.
    Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 367:170–173PubMedCrossRefGoogle Scholar
  5. 5.
    Liebscher T, Schnell L, Schnell D et al (2005) Nogo-A antibody improves regeneration and locomotion of spinal cord-injured rats. Ann Neurol 58:706–719PubMedCrossRefGoogle Scholar
  6. 6.
    GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547–551PubMedCrossRefGoogle Scholar
  7. 7.
    Li S, Liu BP, Budel S et al (2004) Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 24:10511–10520PubMedCrossRefGoogle Scholar
  8. 8.
    Bradbury EJ, Moon LD, Popat RJ et al (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640PubMedCrossRefGoogle Scholar
  9. 9.
    Wu D, Yang P, Zhang X et al (2009) Targeting a dominant negative rho kinase to neurons promotes axonal outgrowth and partial functional recovery after rat rubrospinal tract lesion. Mol Ther 17:2020–2030PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z (2013) Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci 33:15350–15361PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hou S, Nicholson L, van Niekerk E et al (2012) Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery. J Neurosci 32:13206–13220PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bo X, Wu D, Yeh J, Zhang Y (2011) Gene therapy approaches for neuroprotection and axonal regeneration after spinal cord and spinal root injury. Curr Gene Ther 11:101–115PubMedCrossRefGoogle Scholar
  13. 13.
    Franz S, Weidner N, Blesch A (2012) Gene therapy approaches to enhancing plasticity and regeneration after spinal cord injury. Exp Neurol 235:62–69PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Blesch A, Fischer I, Tuszynski MH (2012) Gene therapy, neurotrophic factors and spinal cord regeneration. Handb Clin Neurol 109:563–574PubMedCrossRefGoogle Scholar
  15. 15.
    Logan A, Ahmed Z, Baird A, Gonzalez AM, Berry M (2006) Neurotrophic factor synergy is required for neuronal survival and disinhibited axon regeneration after CNS injury. Brain 129:490–502PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang Y, Dijkhuizen PA, Anderson PN, Lieberman AR, Verhaagen J (1998) NT-3 delivered by an adenoviral vector induces injured dorsal root axons to regenerate into the spinal cord of adult rats. J Neurosci Res 54:554–562PubMedCrossRefGoogle Scholar
  17. 17.
    Kwon BK, Liu J, Lam C et al (2007) Brain-derived neurotrophic factor gene transfer with adeno-associated viral and lentiviral vectors prevents rubrospinal neuronal atrophy and stimulates regeneration-associated gene expression after acute cervical spinal cord injury. Spine (Phila PA 1976) 32:1164–1173CrossRefGoogle Scholar
  18. 18.
    Hutson TH, Verhaagen J, Yanez-Munoz RJ, Moon LD (2012) Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector. Gene Ther 19:49–60PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    McCall J, Weidner N, Blesch A (2012) Neurotrophic factors in combinatorial approaches for spinal cord regeneration. Cell Tissue Res 349:27–37PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Taylor L, Jones L, Tuszynski MH, Blesch A (2006) Neurotrophin-3 gradients established by lentiviral gene delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal cord. J Neurosci 26:9713–9721PubMedCrossRefGoogle Scholar
  21. 21.
    Bonner JF, Connors TM, Silverman WF et al (2011) Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord. J Neurosci 31:4675–4686PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Fehlings MG, Vawda R (2011) Cellular treatments for spinal cord injury: the time is right for clinical trials. Neurotherapeutics 8:704–720PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Deng LX, Deng P, Ruan Y et al (2013) A novel growth-promoting pathway formed by GDNF-overexpressing Schwann cells promotes propriospinal axonal regeneration, synapse formation, and partial recovery of function after spinal cord injury. J Neurosci 33:5655–5667PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Lu Y, Belin S, He Z (2014) Signaling regulations of neuronal regenerative ability. Curr Opin Neurobiol 27C:135–142CrossRefGoogle Scholar
  25. 25.
    Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309:791–793PubMedCrossRefGoogle Scholar
  26. 26.
    Richardson PM, Miao T, Wu D et al (2009) Responses of the nerve cell body to axotomy. Neurosurgery 65:A74–A79PubMedCrossRefGoogle Scholar
  27. 27.
    Zou H, Ho C, Wong K, Tessier-Lavigne M (2009) Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci 29:7116–7123PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Shortland PJ, Baytug B, Krzyzanowska A et al (2006) ATF3 expression in L4 dorsal root ganglion neurons after L5 spinal nerve transection. Eur J Neurosci 23:365–373PubMedCrossRefGoogle Scholar
  29. 29.
    Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32:143–154PubMedCrossRefGoogle Scholar
  30. 30.
    Bareyre FM, Garzorz N, Lang C et al (2011) In vivo imaging reveals a phase-specific role of STAT3 during central and peripheral nervous system axon regeneration. Proc Natl Acad Sci U S A 108:6282–6287PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Parikh P, Hao Y, Hosseinkhani M et al (2011) Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci U S A 108:E99–E107PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Gao Y, Deng K, Hou J et al (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44:609–621PubMedCrossRefGoogle Scholar
  33. 33.
    Lang C, Bradley PM, Jacobi A et al (2013) STAT3 promotes corticospinal remodelling and functional recovery after spinal cord injury. EMBO Rep 14:931–937PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 8:755–765PubMedCrossRefGoogle Scholar
  35. 35.
    Wong LF, Yip PK, Battaglia A et al (2006) Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 9:243–250PubMedCrossRefGoogle Scholar
  36. 36.
    Yip PK, Wong LF, Pattinson D et al (2006) Lentiviral vector expressing retinoic acid receptor beta2 promotes recovery of function after corticospinal tract injury in the adult rat spinal cord. Hum Mol Genet 15:3107–3118PubMedCrossRefGoogle Scholar
  37. 37.
    Gaub P, Joshi Y, Wuttke A et al (2011) The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 134:2134–2148PubMedCrossRefGoogle Scholar
  38. 38.
    Nash M, Pribiag H, Fournier AE, Jacobson C (2009) Central nervous system regeneration inhibitors and their intracellular substrates. Mol Neurobiol 40:224–235PubMedCrossRefGoogle Scholar
  39. 39.
    Giger RJ, Hollis ER 2nd, Tuszynski MH (2010) Guidance molecules in axon regeneration. Cold Spring Harb Perspect Biol 2:a001867PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Geoffroy CG, Zheng B (2014) Myelin-associated inhibitors in axonal growth after CNS injury. Curr Opin Neurobiol 27C:31–38CrossRefGoogle Scholar
  41. 41.
    Yiu G, He Z (2006) Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 7:617–627PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Fournier AE, Gould GC, Liu BP, Strittmatter SM (2002) Truncated soluble Nogo receptor binds Nogo-66 and blocks inhibition of axon growth by myelin. J Neurosci 22:8876–8883PubMedGoogle Scholar
  43. 43.
    Fischer D, He Z, Benowitz LI (2004) Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci 24:1646–1651PubMedCrossRefGoogle Scholar
  44. 44.
    Zhang Y, Gao F, Wu D et al (2013) Lentiviral mediated expression of a NGF-soluble Nogo receptor 1 fusion protein promotes axonal regeneration. Neurobiol Dis 58:270–280PubMedCrossRefGoogle Scholar
  45. 45.
    Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27C:53–60CrossRefGoogle Scholar
  46. 46.
    Dickendesher TL, Baldwin KT, Mironova YA et al (2012) NgR1 and NgR3 are receptors for chondroitin sulfate proteoglycans. Nat Neurosci 15:703–712PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Shen Y, Tenney AP, Busch SA et al (2009) PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326:592–596PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Cregg JM, DePaul MA, Filous AR et al (2014) Functional regeneration beyond the glial scar. Exp Neurol 253:197–207PubMedCrossRefGoogle Scholar
  49. 49.
    Bradbury EJ, Carter LM (2011) Manipulating the glial scar: chondroitinase ABC as a therapy for spinal cord injury. Brain Res Bull 84:306PubMedCrossRefGoogle Scholar
  50. 50.
    Zhao RR, Muir EM, Alves JN et al (2011) Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons. J Neurosci Methods 201:228–238PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Bartus K, James ND, Didangelos A et al (2014) Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury. J Neurosci 34:4822–4836PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Xie F, Zheng B (2008) White matter inhibitors in CNS axon regeneration failure. Exp Neurol 209:302–312PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    McKerracher L, Ferraro GB, Fournier AE (2012) Rho signaling and axon regeneration. Int Rev Neurobiol 105:117–140PubMedCrossRefGoogle Scholar
  54. 54.
    Kubo T, Hata K, Yamaguchi A, Yamashita T (2007) Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration. Curr Pharm Des 13:2493–2499PubMedCrossRefGoogle Scholar
  55. 55.
    Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423PubMedGoogle Scholar
  56. 56.
    Zhang Y, Yeh J, Richardson PM, Bo X (2008) Cell adhesion molecules of the immunoglobulin superfamily in axonal regeneration and neural repair. Restor Neurol Neurosci 26:81–96PubMedGoogle Scholar
  57. 57.
    Xu JC, Bernreuther C, Cui YF et al (2011) Transplanted L1 expressing radial glia and astrocytes enhance recovery after spinal cord injury. J Neurotrauma 28:1921–1937PubMedCrossRefGoogle Scholar
  58. 58.
    Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35PubMedCrossRefGoogle Scholar
  59. 59.
    Gascon E, Vutskits L, Kiss JZ (2010) The role of PSA-NCAM in adult neurogenesis. Adv Exp Med Biol 663:127–136PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang Y, Ghadiri-Sani M, Zhang X, Richardson PM, Yeh J, Bo X (2007) Induced expression of polysialic acid in the spinal cord promotes regeneration of sensory axons. Mol Cell Neurosci 35:109–119PubMedCrossRefGoogle Scholar
  61. 61.
    Zhang Y, Zhang X, Wu D et al (2007) Lentiviral-mediated expression of polysialic acid in spinal cord and conditioning lesion promote regeneration of sensory axons into spinal cord. Mol Ther 15:1796–1804PubMedCrossRefGoogle Scholar
  62. 62.
    Zhang Y, Zhang X, Yeh J, Richardson P, Bo X (2007) Engineered expression of polysialic acid enhances Purkinje cell axonal regeneration in L1/GAP-43 double transgenic mice. Eur J Neurosci 25:351–361PubMedCrossRefGoogle Scholar
  63. 63.
    Luo J, Bo X, Wu D, Yeh J, Richardson PM, Zhang Y (2011) Promoting survival, migration, and integration of transplanted Schwann cells by over-expressing polysialic acid. Glia 59:424–434PubMedCrossRefGoogle Scholar
  64. 64.
    Garcia-Junco-Clemente P, Golshani P (2014) PTEN: a master regulator of neuronal structure, function, and plasticity. Commun Integr Biol 7:e28358PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Park KK, Liu K, Hu Y et al (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Liu K, Lu Y, Lee JK et al (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075–1081PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Sun F, Park KK, Belin S et al (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480:372–375PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Olson L (2013) Combinatory treatments needed for spinal cord injury. Exp Neurol 248:309–315PubMedCrossRefGoogle Scholar
  69. 69.
    Kadoya K, Tsukada S, Lu P et al (2009) Combined intrinsic and extrinsic neuronal mechanisms facilitate bridging axonal regeneration one year after spinal cord injury. Neuron 64:165–172PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Alto LT, Havton LA, Conner JM, Hollis Ii ER, Blesch A, Tuszynski MH (2009) Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury. Nat Neurosci 12:1106–1113PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Lu P, Blesch A, Graham L et al (2012) Motor axonal regeneration after partial and complete spinal cord transection. J Neurosci 32:8208–8218PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMedCentralPubMedGoogle Scholar
  73. 73.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, the fourth edition. Academic, New York, NYGoogle Scholar
  74. 74.
    Sedy J, Urdzikova L, Jendelova P, Sykova E (2008) Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev 32:550–580PubMedCrossRefGoogle Scholar
  75. 75.
    Oudega M, Xu XM (2006) Schwann cell transplantation for repair of the adult spinal cord. J Neurotrauma 23:453–467PubMedCrossRefGoogle Scholar
  76. 76.
    Fortun J, Hill CE, Bunge MB (2009) Combinatorial strategies with Schwann cell transplantation to improve repair of the injured spinal cord. Neurosci Lett 456:124–132PubMedCrossRefGoogle Scholar
  77. 77.
    Brockes JP, Fields KL, Raff MC (1979) Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res 165:105–118PubMedCrossRefGoogle Scholar
  78. 78.
    King VR, Hewazy D, Alovskaya A, Phillips JB, Brown RA, Priestley JV (2010) The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat. Neuroscience 168:523–530PubMedCrossRefGoogle Scholar
  79. 79.
    Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115:169–179PubMedCrossRefGoogle Scholar
  80. 80.
    Neafsey EJ, Bold EL, Haas G et al (1986) The organization of the rat motor cortex: a microstimulation mapping study. Brain Res 396:77–96PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUK

Personalised recommendations