Skip to main content

Gene Therapy for Epilepsies

  • Protocol
  • First Online:
Book cover Gene Delivery and Therapy for Neurological Disorders

Part of the book series: Neuromethods ((NM,volume 98))

  • 1179 Accesses

Abstract

Epilepsy is an excellent indication for gene therapy due to a significant unmet need, which is the high percentage of patients with symptoms that remain inadequately relieved by the current available treatments. This chapter provides an up-to-date review on the preclinical studies assessing the potential of gene therapy for epilepsy. We also provide here a set of procedures that can be used as a starting point to evaluate potential therapeutic candidates for epilepsy gene therapy. The techniques described here include adeno-associated viral vector production, genomic titering of the vector, stereotaxic neurosurgery for intracerebral vector administration, and the kainic acid seizure model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirtz D, Thurman DJ, Gwinn-Hardy K et al (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337

    Google Scholar 

  2. Cascino GD (2008) When drugs and surgery don’t work. Epilepsia 49(Suppl 9):79–84

    Google Scholar 

  3. Kwan P, Brodie MJ (2000) Early identification of refractory epilepsy. N Engl J Med 342(5):314–319

    Article  CAS  PubMed  Google Scholar 

  4. Loscher W, Ebert U, Lehmann H et al (1998) Seizure suppression in kindling epilepsy by grafts of fetal GABAergic neurons in rat substantia nigra. J Neurosci Res 51(2):196–209

    Article  CAS  PubMed  Google Scholar 

  5. Thompson KW, Suchomelova LM (2004) Transplants of cells engineered to produce GABA suppress spontaneous seizures. Epilepsia 45(1):4–12

    Article  CAS  PubMed  Google Scholar 

  6. Castillo CG, Mendoza-Trejo S, Aguilar MB et al (2008) Intranigral transplants of a GABAergic cell line produce long-term alleviation of established motor seizures. Behav Brain Res 193(1):17–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Nolte MW, Loscher W, Herden C et al (2008) Benefits and risks of intranigral transplantation of GABA-producing cells subsequent to the establishment of kindling-induced seizures. Neurobiol Dis 31(3):342–354

    Article  CAS  PubMed  Google Scholar 

  8. Xiao X, McCown TJ, Li J et al (1997) Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res 756(1–2):76–83

    Article  CAS  PubMed  Google Scholar 

  9. Brooks-Kayal AR, Shumate MD, Jin H et al (1998) Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4(10):1166–1172

    Article  CAS  PubMed  Google Scholar 

  10. Raol YH, Lund IV, Bandyopadhyay S et al (2006) Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 26(44):11342–11346

    Article  CAS  PubMed  Google Scholar 

  11. Shan W, Wu X, Zhang G et al (1997) Effects of antisense oligodeoxynucleotides to NR1 on suppression of seizures and protection of cortical neurons from excitotoxicity in vivo and in vitro. Chin Med J (Engl) 110(8):579–583

    CAS  Google Scholar 

  12. Haberman R, Criswell H, Snowdy S et al (2002) Therapeutic liabilities of in vivo viral vector tropism: adeno-associated virus vectors, NMDAR1 antisense, and focal seizure sensitivity. Mol Ther 6(4):495–500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kalev-Zylinska ML, Symes W, Young D et al (2009) Knockdown and overexpression of NR1 modulates NMDA receptor function. Mol Cell Neurosci 41(4):383–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. During MJ, Symes CW, Lawlor PA et al (2000) An oral vaccine against NMDAR1 with efficacy in experimental stroke and epilepsy. Science 287(5457):1453–1460

    Article  CAS  PubMed  Google Scholar 

  15. Mazarati AM, Hohmann JG, Bacon A et al (2000) Modulation of hippocampal excitability and seizures by galanin. J Neurosci 20(16):6276–6281

    CAS  PubMed  Google Scholar 

  16. Vezzani A, Hoyer D (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur J Neurosci 11(11):3767–3776

    Article  CAS  PubMed  Google Scholar 

  17. Vezzani A, Sperk G, Colmers WF (1999) Neuropeptide Y: emerging evidence for a functional role in seizure modulation. Trends Neurosci 22(1):25–30

    Article  CAS  PubMed  Google Scholar 

  18. Haberman RP, Samulski RJ, McCown TJ (2003) Attenuation of seizures and neuronal death by adeno-associated virus vector galanin expression and secretion. Nat Med 9(8):1076–1080

    Article  CAS  PubMed  Google Scholar 

  19. Lin EJ, Richichi C, Young D et al (2003) Recombinant AAV-mediated expression of galanin in rat hippocampus suppresses seizure development. Eur J Neurosci 18(7):2087–2092

    Article  PubMed  Google Scholar 

  20. McCown TJ (2006) Adeno-associated virus-mediated expression and constitutive secretion of galanin suppresses limbic seizure activity in vivo. Mol Ther 14(1):63–68

    Article  CAS  PubMed  Google Scholar 

  21. Richichi C, Lin EJ, Stefanin D et al (2004) Anticonvulsant and antiepileptogenic effects mediated by adeno-associated virus vector neuropeptide Y expression in the rat hippocampus. J Neurosci 24(12):3051–3059

    Article  CAS  PubMed  Google Scholar 

  22. Noe F, Pool AH, Nissinen J et al (2008) Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131(Pt 6):1506–1515

    Article  PubMed  Google Scholar 

  23. Noe F, Vaghi V, Balducci C et al (2010) Anticonvulsant effects and behavioural outcomes of rAAV serotype 1 vector-mediated neuropeptide Y overexpression in rat hippocampus. Gene Ther 17(5):643–652

    Article  CAS  PubMed  Google Scholar 

  24. Lin EJ, Young D, Baer K et al (2006) Differential actions of NPY on seizure modulation via Y1 and Y2 receptors: evidence from receptor knockout mice. Epilepsia 47(4):773–780

    Article  PubMed  Google Scholar 

  25. Foti S, Haberman RP, Samulski RJ et al (2007) Adeno-associated virus-mediated expression and constitutive secretion of NPY or NPY13-36 suppresses seizure activity in vivo. Gene Ther 14(21):1534–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Woldbye DP, Angehagen M, Gotzsche CR et al (2010) Adeno-associated viral vector-induced overexpression of neuropeptide Y Y2 receptors in the hippocampus suppresses seizures. Brain 133(9):2778–2788

    Article  PubMed  Google Scholar 

  27. Gotzsche CR, Nikitidou L, Sorensen AT et al (2012) Combined gene overexpression of neuropeptide Y and its receptor Y5 in the hippocampus suppresses seizures. Neurobiol Dis 45(1):288–296

    Article  PubMed  Google Scholar 

  28. Olesen MV, Christiansen SH, Gotzsche CR et al (2012) Neuropeptide Y Y1 receptor hippocampal overexpression via viral vectors is associated with modest anxiolytic-like and proconvulsant effects in mice. J Neurosci Res 90(2):498–507

    Article  CAS  PubMed  Google Scholar 

  29. Sorensen AT, Kanter-Schlifke I, Carli M et al (2008) NPY gene transfer in the hippocampus attenuates synaptic plasticity and learning. Hippocampus 18(6):564–574

    Article  CAS  PubMed  Google Scholar 

  30. Sorensen AT, Nikitidou L, Ledri M et al (2009) Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP. Exp Neurol 215(2):328–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Lin EJ, Lin S, Aljanova A et al (2010) Adult-onset hippocampal-specific neuropeptide Y overexpression confers mild anxiolytic effect in mice. Eur Neuropsychopharmacol 20(3):164–175

    Article  CAS  PubMed  Google Scholar 

  32. Olesen MV, Christiansen SH, Gotzsche CR et al (2012) Y5 neuropeptide Y receptor overexpression in mice neither affects anxiety- and depression-like behaviours nor seizures but confers moderate hyperactivity. Neuropeptides 46(2):71–79

    Article  CAS  PubMed  Google Scholar 

  33. Tallent MK, Qiu C (2008) Somatostatin: an endogenous antiepileptic. Mol Cell Endocrinol 286(1–2):96–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hashimoto T, Obata K (1991) Induction of somatostatin by kainic acid in pyramidal and granule cells of the rat hippocampus. Neurosci Res 12(4):514–527

    Article  CAS  PubMed  Google Scholar 

  35. Manfridi A, Forloni GL, Vezzani A et al (1991) Functional and histological consequences of quinolinic and kainic acid-induced seizures on hippocampal somatostatin neurons. Neuroscience 41(1):127–135

    Article  CAS  PubMed  Google Scholar 

  36. Buckmaster PS, Otero-Corchon V, Rubinstein M et al (2002) Heightened seizure severity in somatostatin knockout mice. Epilepsy Res 48(1–2):43–56

    Article  CAS  PubMed  Google Scholar 

  37. Mazarati A, Wasterlain CG (2002) Anticonvulsant effects of four neuropeptides in the rat hippocampus during self-sustaining status epilepticus. Neurosci Lett 331(2):123–127

    Article  CAS  PubMed  Google Scholar 

  38. Zafar R, King MA, Carney PR (2012) Adeno associated viral vector-mediated expression of somatostatin in rat hippocampus suppresses seizure development. Neurosci Lett 509(2):87–91

    Article  CAS  PubMed  Google Scholar 

  39. Lee KS, Schubert P, Heinemann U (1984) The anticonvulsive action of adenosine: a postsynaptic, dendritic action by a possible endogenous anticonvulsant. Brain Res 321(1):160–164

    Article  CAS  PubMed  Google Scholar 

  40. Dragunow M, Goddard GV, Laverty R (1985) Is adenosine an endogenous anticonvulsant? Epilepsia 26(5):480–487

    Article  CAS  PubMed  Google Scholar 

  41. During MJ, Spencer DD (1992) Adenosine: a potential mediator of seizure arrest and postictal refractoriness. Ann Neurol 32(5):618–624

    Article  CAS  PubMed  Google Scholar 

  42. Fedele DE, Li T, Lan JQ et al (2006) Adenosine A1 receptors are crucial in keeping an epileptic focus localized. Exp Neurol 200(1):184–190

    Article  CAS  PubMed  Google Scholar 

  43. Huber A, Padrun V, Deglon N et al (2001) Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc Natl Acad Sci U S A 98(13):7611–7616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Guttinger M, Fedele D, Koch P et al (2005) Suppression of kindled seizures by paracrine adenosine release from stem cell-derived brain implants. Epilepsia 46(8):1162–1169

    Article  PubMed  Google Scholar 

  45. Li T, Steinbeck JA, Lusardi T et al (2007) Suppression of kindling epileptogenesis by adenosine releasing stem cell-derived brain implants. Brain 130(Pt 5):1276–1288

    Article  PubMed  Google Scholar 

  46. Guttinger M, Padrun V, Pralong WF et al (2005) Seizure suppression and lack of adenosine A1 receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts. Exp Neurol 193(1):53–64

    Article  PubMed  Google Scholar 

  47. Ren G, Li T, Lan JQ et al (2007) Lentiviral RNAi-induced downregulation of adenosine kinase in human mesenchymal stem cell grafts: a novel perspective for seizure control. Exp Neurol 208(1):26–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Theofilas P, Brar S, Stewart KA et al (2011) Adenosine kinase as a target for therapeutic antisense strategies in epilepsy. Epilepsia 52(3):589–601

    Article  PubMed Central  PubMed  Google Scholar 

  49. Simonato M, Tongiorgi E, Kokaia M (2006) Angels and demons: neurotrophic factors and epilepsy. Trends Pharmacol Sci 27(12):631–638

    Article  CAS  PubMed  Google Scholar 

  50. Yoo YM, Lee CJ, Lee U et al (2006) Neuroprotection of adenoviral-vector-mediated GDNF expression against kainic-acid-induced excitotoxicity in the rat hippocampus. Exp Neurol 200(2):407–417

    Article  CAS  PubMed  Google Scholar 

  51. Kanter-Schlifke I, Georgievska B, Kirik D et al (2007) Seizure suppression by GDNF gene therapy in animal models of epilepsy. Mol Ther 15(6):1106–1113

    CAS  PubMed  Google Scholar 

  52. Rao MS, Hattiangady B, Rai KS et al (2007) Strategies for promoting anti-seizure effects of hippocampal fetal cells grafted into the hippocampus of rats exhibiting chronic temporal lobe epilepsy. Neurobiol Dis 27(2):117–132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Paradiso B, Marconi P, Zucchini S et al (2009) Localized delivery of fibroblast growth factor-2 and brain-derived neurotrophic factor reduces spontaneous seizures in an epilepsy model. Proc Natl Acad Sci U S A 106(17):7191–7196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Paradiso B, Zucchini S, Su T et al (2011) Localized overexpression of FGF-2 and BDNF in hippocampus reduces mossy fiber sprouting and spontaneous seizures up to 4 weeks after pilocarpine-induced status epilepticus. Epilepsia 52(3):572–578

    Article  PubMed  Google Scholar 

  55. Bovolenta R, Zucchini S, Paradiso B et al (2010) Hippocampal FGF-2 and BDNF overexpression attenuates epileptogenesis-associated neuroinflammation and reduces spontaneous recurrent seizures. J Neuroinflammation 7:81

    Article  PubMed Central  PubMed  Google Scholar 

  56. Zhang LX, Li XL, Smith MA et al (1997) Lipofectin-facilitated transfer of cholecystokinin gene corrects behavioral abnormalities of rats with audiogenic seizures. Neuroscience 77(1):15–22

    Article  CAS  PubMed  Google Scholar 

  57. Laing JM, Gober MD, Golembewski EK et al (2006) Intranasal administration of the growth-compromised HSV-2 vector DeltaRR prevents kainate-induced seizures and neuronal loss in rats and mice. Mol Ther 13(5):870–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. McLaughlin J, Roozendaal B, Dumas T et al (2000) Sparing of neuronal function postseizure with gene therapy. Proc Natl Acad Sci U S A 97(23):12804–12809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Yenari MA, Fink SL, Sun GH et al (1998) Gene therapy with HSP72 is neuroprotective in rat models of stroke and epilepsy. Ann Neurol 44(4):584–591

    Article  CAS  PubMed  Google Scholar 

  60. Klugmann M, Symes CW, Leichtlein CB et al (2005) AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol Cell Neurosci 28(2):347–360

    Article  CAS  PubMed  Google Scholar 

  61. Wykes RC, Heeroma JH, Mantoan L et al (2012) Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci Transl Med 4(161):161ra152

    Article  PubMed Central  PubMed  Google Scholar 

  62. Shu X, Du S, Chen X et al (2011) Transplantation of neural stem cells overexpressing cardiotrophin-1 inhibits sprouting of hippocampal mossy fiber in a rat model of status epilepticus. Cell Biochem Biophys 61(2):367–370

    Article  CAS  PubMed  Google Scholar 

  63. Krook-Magnuson E, Armstrong C, Oijala M et al (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376

    Article  PubMed Central  PubMed  Google Scholar 

  64. Paz JT, Davidson TJ, Frechette ES et al (2013) Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat Neurosci 16(1):64–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Sukhotinsky I, Chan AM, Ahmed OJ et al (2013) Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS One 8(4):e62013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. LeWitt PA, Rezai AR, Leehey MA et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10(4):309–319

    Google Scholar 

  67. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    Google Scholar 

  68. Racine RJ (1972) Modification of seizure activity by electrical stimulation II Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    Article  CAS  PubMed  Google Scholar 

  69. Castillo CG, Mendoza S, Freed WJ, Giordano M (2006) Intranigral transplants of immortalized GABAergic cells decrease the expression of kainic acid-induced seizures in the rat. Behav Brain Res 171:109–115

    Article  CAS  PubMed  Google Scholar 

  70. Sørensen AT, Kanter-Schlifke I, Lin EJ, During MJ, Kokaia M (2008) Activity-dependent volume transmission by transgene NPY attenuates glutamate release and LTP in the subiculum. Mol Cell Neurosci 39:229–37

    Article  PubMed  Google Scholar 

  71. Li T, Ren G, Kaplan DL, Boison D (2009) Human mesenchymal stem cell grafts engineered to release adenosine reduce chronic seizures in a mouse model of CA3-selective epileptogenesis. Epilepsy Res 84:238–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Seki T, Matsubayashi H, Amano T, Kitada K, Serikawa T, Sasa M, Sakai N (2004) Adenoviral gene transfer of aspartoacylase ameliorates tonic convulsions of spontaneously epileptic rats. Neurochem Int 45:171–8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. During D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lin, EJ.D., During, M.J. (2015). Gene Therapy for Epilepsies. In: Bo, X., Verhaagen, J. (eds) Gene Delivery and Therapy for Neurological Disorders. Neuromethods, vol 98. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2306-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2306-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2305-2

  • Online ISBN: 978-1-4939-2306-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics