Advertisement

Subcellular Transcript Localization in Drosophila Embryos and Tissues Visualized by Multiplex-FISH

  • Julie Bergalet
  • Carole Iampietro
  • Ashley Chin
  • Xuan-Tam Nguyen
  • Sulin Oré-Rodriguez
  • Neal Cody
  • Eric LécuyerEmail author
Protocol
Part of the Neuromethods book series (NM, volume 99)

Abstract

Determining the spatiotemporal expression dynamics of a gene, or the subcellular localization properties of its encoded RNA, is often a key first step toward elucidating its function. Fluorescent in situ hybridization (FISH) represents the gold standard method for visualizing RNA expression and subcellular localization features in distinct cells, tissue specimens, and whole-mount organisms. This chapter describes a high-resolution FISH protocol for the detection of coding or noncoding RNA expression and localization dynamics in embryos and tissues of the fruit fly, Drosophila melanogaster. Variations of the protocol are proposed for the co-detection of different RNAs and for the co-labeling of RNAs and proteins. The protocol also outlines details for conducting FISH in 96-well plate format, which significantly enhances the throughput and versatility of the procedure.

Key words

Drosophila Embryos and tissues Fluorescent in situ hybridization FISH mRNA Noncoding RNA RNA–RNA and RNA–protein co-staining 

References

  1. 1.
    Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci U S A 64:600–604CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc Natl Acad Sci U S A 63:378–383CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    John HA, Birnstiel ML, Jones KW (1969) RNA-DNA hybrids at the cytological level. Nature 223:582–587CrossRefPubMedGoogle Scholar
  4. 4.
    Schwarzacher T (2003) DNA, chromosomes, and in situ hybridization. Genome 46:953–962CrossRefPubMedGoogle Scholar
  5. 5.
    Harrison PR, Conkie D, Paul J, Jones K (1973) Localisation of cellular globin messenger RNA by in situ hybridisation to complementary DNA. FEBS Lett 32:109–112CrossRefPubMedGoogle Scholar
  6. 6.
    Conkie D, Affara N, Harrison PR, Paul J, Jones K (1974) In situ localization of globin messenger RNA formation. II. After treatment of Friend virus-transformed mouse cells with dimethyl sulfoxide. J Cell Biol 63:414–419CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Pochet R, Brocas H, Vassart G, Toubeau G, Seo H, Refetoff S, Dumont JE, Pasteels JL (1981) Radioautographic localization of prolactin messenger RNA on histological sections by in situ hybridization. Brain Res 211:433–438CrossRefPubMedGoogle Scholar
  8. 8.
    Cox KH, DeLeon DV, Angerer LM, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol 101:485–502CrossRefPubMedGoogle Scholar
  9. 9.
    Egger D, Bolten R, Rahner C, Bienz K (1999) Fluorochrome-labeled RNA as a sensitive, strand-specific probe for direct fluorescence in situ hybridization. Histochem Cell Biol 111:319–324CrossRefPubMedGoogle Scholar
  10. 10.
    Binder M, Tourmente S, Roth J, Renaud M, Gehring WJ (1986) In situ hybridization at the electron microscope level: localization of transcripts on ultrathin sections of Lowicryl K4M-embedded tissue using biotinylated probes and protein A-gold complexes. J Cell Biol 102:1646–1653CrossRefPubMedGoogle Scholar
  11. 11.
    Bains MA, Giles I, Wright DH (1997) Distribution and configuration of c-myc RNA during transcriptional attenuation in differentiating cells in-situ. Histochem Cell Biol 107:259–263CrossRefPubMedGoogle Scholar
  12. 12.
    Hemmati-Brivanlou A, Frank D, Bolce ME, Brown BD, Sive HL, Harland RM (1990) Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development 110:325–330PubMedGoogle Scholar
  13. 13.
    Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translation control of the segmentation gene hunchback. Chromosoma 98:81–85CrossRefPubMedGoogle Scholar
  14. 14.
    Hughes SC, Krause HM (1999) Single and double FISH protocols for Drosophila. Methods Mol Biol 122:93–101PubMedGoogle Scholar
  15. 15.
    Wilkie GS, Davis I (1998) Visualizing mRNA by in situ hybridization using high resolution and sensitive tyramide signal amplification. Elsevier Trends J 3(1):94–97, Technical Tips Online, T014458Google Scholar
  16. 16.
    Kosman D, Mizutani CM, Lemons D, Cox WG, McGinnis W, Bier E (2004) Multiplex detection of RNA expression in Drosophila embryos. Science 305:846CrossRefPubMedGoogle Scholar
  17. 17.
    Lecuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T, Hughes TR, Tomancak P, Krause HM (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187CrossRefPubMedGoogle Scholar
  18. 18.
    Lecuyer E, Yoshida H, Krause HM (2009) Global implications of mRNA localization pathways in cellular organization. Curr Opin Cell Biol 21:409–415CrossRefPubMedGoogle Scholar
  19. 19.
    Medioni C, Mowry K, Besse F (2012) Principles and roles of mRNA localization in animal development. Development 139:3263–3276CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Tomancak P, Beaton A, Weiszmann R et al (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:1–88CrossRefGoogle Scholar
  21. 21.
    Stapleton M, Carlson J, Brokstein P et al (2002) A Drosophila full-length cDNA resource. Genome Biol 3:1–80CrossRefGoogle Scholar
  22. 22.
    Stapleton M, Liao G, Brokstein P et al (2002) The Drosophila gene collection: identification of putative full-length cDNAs for 70 % of D. melanogaster genes. Genome Res 12:1294–1300CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Lecuyer E (2011) High resolution fluorescent in situ hybridization in Drosophila. Methods Mol Biol 714:31–47CrossRefPubMedGoogle Scholar
  24. 24.
    Toledano H, D'Alterio C, Loza-Coll M, Jones DL (2012) Dual fluorescence detection of protein and RNA in Drosophila tissues. Nat Protoc 7:1808–1817CrossRefPubMedGoogle Scholar
  25. 25.
    Legendre F, Cody NA, Iampietro C, Bergalet J, Lefebvre FA, Moquin-Beaudry G, Zhang O, Wang X, Lécuyer E (2013) Whole mount RNA fluorescent in situ hybridization of Drosophila embryos. J Vis Exp 71:e50057PubMedGoogle Scholar
  26. 26.
    Chamberlin M, Ring J (1973) Characterization of T7-specific ribonucleic acid polymerase. II. Inhibitors of the enzyme and their application to the study of the enzymatic reaction. J Biol Chem 248:2245–2250PubMedGoogle Scholar
  27. 27.
    Dunn JJ, Bautz FA, Bautz EK (1971) Different template specificities of phage T3 and T7 RNA polymerases. Nat New Biol 230:94–96CrossRefPubMedGoogle Scholar
  28. 28.
    Speel EJ, Ramaekers FC, Hopman AH (1997) Sensitive multicolor fluorescence in situ hybridization using catalyzed reporter deposition (CARD) amplification. J Histochem Cytochem 45:1439–1446CrossRefPubMedGoogle Scholar
  29. 29.
    Wright CS (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II. J Mol Biol 178:91–104CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Julie Bergalet
    • 1
  • Carole Iampietro
    • 1
  • Ashley Chin
    • 5
  • Xuan-Tam Nguyen
    • 1
    • 2
  • Sulin Oré-Rodriguez
    • 1
    • 2
  • Neal Cody
    • 1
  • Eric Lécuyer
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Institut de Recherches Cliniques de Montréal (IRCM)MontréalCanada
  2. 2.Département de BiochimieUniversité de MontréalMontréalCanada
  3. 3.Division of Experimental MedicineMcGill UniversityMontréalCanada
  4. 4.IRCM, RNA Biology LaboratoryMontréalCanada
  5. 5.Division of Experimental MedicineMcGill University, Institut de Recherches Cliniques de Montréal (IRCM)MontréalCanada

Personalised recommendations