Generation and Analysis of Mouse Intestinal Tumors and Organoids Harboring APC and K-Ras Mutations

Part of the Methods in Molecular Biology book series (MIMB, volume 1267)


Genetically engineered mouse models of intestinal cancer are experimental systems in which mice are genetically manipulated to develop malignancies in the gastrointestinal tract. These models enable researchers to study the mechanisms of onset, progression, and metastasis of the disease. They also provide a valuable biological system which is suitable for testing (novel) drugs in vivo. Recently, an in vitro culture model has been established in which intestinal epithelial stem cells can grow into three-dimensional, ever-expanding epithelial organoids that retain their original organ identity and genetic stability. This culture system has been applied to diseased epithelia, such as adenoma, adenocarcinoma, and Barrett’s epithelium. These organoids can be particularly useful for studying the mechanisms of intestinal tumors and to test (novel) drugs in vitro. Here, we describe our current laboratory protocols to generate and analyze intestinal tumors and organoids harboring APC and K-Ras double mutations.

Key words

Intestine Lgr5 Stem-cells Cancer APC K-Ras Organoids 



The authors like to thank Harry Begthel, Marc van de Wetering, Stieneke van den Brink, and Jeroen Korving for their help in preparing this book chapter.


  1. 1.
    Noah TK, Donahue B, Shroyer NF (2011) Intestinal development and differentiation. Exp Cell Res 317(19):2702–2710. doi: 10.1016/j.yexcr.2011.09.006 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154(2):274–284. doi: 10.1016/j.cell.2013.07.004 PubMedCrossRefGoogle Scholar
  3. 3.
    Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149(6):1192–1205. doi: 10.1016/j.cell.2012.05.012 PubMedCrossRefGoogle Scholar
  4. 4.
    Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25(2):254–264. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  5. 5.
    Poulogiannis G, Luo FJ, Arends MJ (2012) RAS signalling in the colorectum in health and disease. Cell Commun Adhes 19(1):1–9. doi: 10.3109/15419061.2011.649380 PubMedCrossRefGoogle Scholar
  6. 6.
    Velho S, Haigis KM (2011) Regulation of homeostasis and oncogenesis in the intestinal epithelium by Ras. Exp Cell Res 317(19):2732–2739. doi: 10.1016/j.yexcr.2011.06.002 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tion-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111(2):241–250. doi: 10.1016/S0092-8674(02)01014-0 PubMedCrossRefGoogle Scholar
  8. 8.
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007. doi: 10.1038/Nature06196 PubMedCrossRefGoogle Scholar
  9. 9.
    Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457(7229):608–611. doi: 10.1038/Nature07602 PubMedCrossRefGoogle Scholar
  10. 10.
    Bouabe H, Okkenhaug K (2013) Gene targeting in mice: a review. Methods Mol Biol 1064:315–336. doi: 10.1007/978-1-62703-601-6_23 PubMedCrossRefGoogle Scholar
  11. 11.
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265. doi: 10.1038/Nature07935 PubMedCrossRefGoogle Scholar
  12. 12.
    Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340(6137):1190–1194. doi: 10.1126/science.1234852 PubMedCrossRefGoogle Scholar
  13. 13.
    Sato T, Stange DE, Ferrante M, Vries RGJ, van Es JH, van den Brink S, van Houdt WJ, Pronk A, van Gorp J, Siersema PD, Clevers H (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772. doi: 10.1053/j.gastro.2011.07.050 PubMedCrossRefGoogle Scholar
  14. 14.
    Koo BK, Stange DE, Sato T, Karthaus W, Farin HF, Huch M, van Es JH, Clevers H (2012) Controlled gene expression in primary Lgr5 organoid cultures. Nat Methods 9(1):81–83. doi: 10.1038/Nmeth.1802 CrossRefGoogle Scholar
  15. 15.
    Schwank G, Andersson-Rolf A, Koo BK, Sasaki N, Clevers H (2013) Generation of BAC transgenic epithelial organoids. PLoS One 8(10):e76871. doi: 10.1371/journal.pone.0076871 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T, Sasaki N, Boymans S, Cuppen E, van der Ent CK, Nieuwenhuis EES, Beekman JM, Clevers H (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658. doi: 10.1016/j.stem.2013.11.002 PubMedCrossRefGoogle Scholar
  17. 17.
    Ootani A, Li XN, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR, Kuo CJ (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15(6):701–706. doi: 10.1038/Nm.1951 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Gregorieff A, Clevers H (2010) In situ hybridization to identify gut stem cells. Curr Protoc Stem Cell Biol Chapter 2:Unit 2F 1. doi:10.1002/9780470151808.sc02f01s12Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Hubrecht Institute-KNAW & University Medical Center UtrechtUtrechtThe Netherlands

Personalised recommendations