Skip to main content

Modeling the Study of DNA Damage Responses in Mice

  • Protocol
  • First Online:
Mouse Models of Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1267))

Abstract

Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate aging. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses.

*Julia Specks and Maria Nieto-Soler should be considered as co-first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindahl T, Barnes DE (2000) Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 65:127–133

    CAS  PubMed  Google Scholar 

  2. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745, doi: S1097-2765(07)00783-6 [pii] 10.1016/j.molcel.2007.11.015

    CAS  PubMed  Google Scholar 

  3. Callen E, Jankovic M, Wong N, Zha S, Chen HT, Difilippantonio S, Di Virgilio M, Heidkamp G, Alt FW, Nussenzweig A, Nussenzweig M (2009) Essential role for DNA-PKcs in DNA double-strand break repair and apoptosis in ATM-deficient lymphocytes. Mol Cell 34(3):285–297, doi: S1097-2765(09)00278-0 [pii] 10.1016/j.molcel.2009.04.025

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Dudley DD, Chaudhuri J, Bassing CH, Alt FW (2005) Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43–112, doi: S0065277604860024 [pii] 10.1016/S0065-2776(04)86002-4

    CAS  PubMed  Google Scholar 

  5. Zickler D, Kleckner N (1998) The leptotene-zygotene transition of meiosis. Annu Rev Genet 32:619–697. doi:10.1146/annurev.genet.32.1.619

    CAS  PubMed  Google Scholar 

  6. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NG, Taylor AM, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268(5218):1749–1753

    CAS  PubMed  Google Scholar 

  7. Elson A, Wang Y, Daugherty CJ, Morton CC, Zhou F, Campos-Torres J, Leder P (1996) Pleiotropic defects in ataxia-telangiectasia protein-deficient mice. Proc Natl Acad Sci U S A 93(23):13084–13089

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F, Shiloh Y, Crawley JN, Ried T, Tagle D, Wynshaw-Boris A (1996) Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86(1):159–171, doi: S0092-8674(00)80086-0 [pii]

    CAS  PubMed  Google Scholar 

  9. Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D (1996) Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10(19):2411–2422

    CAS  PubMed  Google Scholar 

  10. Boveri T (1914) Zur frage der entstehung maligner tumoren. Gustav Fischer, Jena

    Google Scholar 

  11. Jackson AL, Loeb LA (1998) On the origin of multiple mutations in human cancers. Semin Cancer Biol 8(6):421–429, doi: S1044579X98901134 [pii]

    CAS  PubMed  Google Scholar 

  12. Apostolou P, Fostira F (2013) Hereditary breast cancer: the era of new susceptibility genes. Biomed Res Int 2013:747318. doi:10.1155/2013/747318

    PubMed Central  PubMed  Google Scholar 

  13. Evers B, Jonkers J (2006) Mouse models of BRCA1 and BRCA2 deficiency: past lessons, current understanding and future prospects. Oncogene 25(43):5885–5897, doi: 1209871 [pii] 10.1038/sj.onc.1209871

    CAS  PubMed  Google Scholar 

  14. de Wind N, Dekker M, van Rossum A, van der Valk M, te Riele H (1998) Mouse models for hereditary nonpolyposis colorectal cancer. Cancer Res 58(2):248–255

    PubMed  Google Scholar 

  15. Chester N, Kuo F, Kozak C, O’Hara CD, Leder P (1998) Stage-specific apoptosis, developmental delay, and embryonic lethality in mice homozygous for a targeted disruption in the murine Bloom’s syndrome gene. Genes Dev 12(21):3382–3393

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Moldovan GL, D’Andrea AD (2009) How the fanconi anemia pathway guards the genome. Annu Rev Genet 43:223–249. doi:10.1146/annurev-genet-102108-134222

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Parmar K, D’Andrea A, Niedernhofer LJ (2009) Mouse models of Fanconi anemia. Mutat Res 668(1–2):133–140, doi: S0027-5107(09)00117-1 [pii] 10.1016/j.mrfmmm.2009.03.015

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Garaycoechea JI, Crossan GP, Langevin F, Daly M, Arends MJ, Patel KJ (2012) Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489(7417):571–575, doi: nature11368 [pii] 10.1038/nature11368

    CAS  PubMed  Google Scholar 

  19. Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA (2004) Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36(8):877–882, doi: 10.1038/ng1389 ng1389 [pii]

    CAS  PubMed  Google Scholar 

  20. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298, doi: 10.1038/nature01629 nature01629 [pii]

    CAS  PubMed  Google Scholar 

  21. Liu B, Wang J, Chan KM, Tjia WM, Deng W, Guan X, Huang JD, Li KM, Chau PY, Chen DJ, Pei D, Pendas AM, Cadinanos J, Lopez-Otin C, Tse HF, Hutchison C, Chen J, Cao Y, Cheah KS, Tryggvason K, Zhou Z (2005) Genomic instability in laminopathy-based premature aging. Nat Med 11(7):780–785, doi: nm1266 [pii] 10.1038/nm1266

    CAS  PubMed  Google Scholar 

  22. O’Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA, Goodship JA (2003) A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33(4):497–501, doi: 10.1038/ng1129 ng1129 [pii]

    PubMed  Google Scholar 

  23. Murga M, Bunting S, Montana MF, Soria R, Mulero F, Canamero M, Lee Y, McKinnon PJ, Nussenzweig A, Fernandez-Capetillo O (2009) A mouse model of ATR-Seckel shows embryonic replicative stress and accelerated aging. Nat Genet 41(8):891–898, doi: ng.420 [pii] 10.1038/ng.420

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Fernandez-Capetillo O (2010) Intrauterine programming of ageing. EMBO Rep 11(1):32–36, doi: embor2009262 [pii] 10.1038/embor.2009.262

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132(4):681–696

    CAS  PubMed  Google Scholar 

  26. Cleaver JE, Bootsma D (1975) Xeroderma pigmentosum: biochemical and genetic characteristics. Annu Rev Genet 9:19–38. doi:10.1146/annurev.ge.09.120175.000315

    CAS  PubMed  Google Scholar 

  27. Natale V (2011) A comprehensive description of the severity groups in Cockayne syndrome. Am J Med Genet A 155A(5):1081–1095. doi:10.1002/ajmg.a.33933

    PubMed  Google Scholar 

  28. Jaarsma D, van der Pluijm I, van der Horst GT, Hoeijmakers JH (2013) Cockayne syndrome pathogenesis: lessons from mouse models. Mech Ageing Dev 134(5–6):180–195, doi: S0047-6374(13)00049-3 [pii] 10.1016/j.mad.2013.04.003

    CAS  PubMed  Google Scholar 

  29. Niedernhofer LJ, Garinis GA, Raams A, Lalai AS, Robinson AR, Appeldoorn E, Odijk H, Oostendorp R, Ahmad A, van Leeuwen W, Theil AF, Vermeulen W, van der Horst GT, Meinecke P, Kleijer WJ, Vijg J, Jaspers NG, Hoeijmakers JH (2006) A new progeroid syndrome reveals that genotoxic stress suppresses the somatotroph axis. Nature 444(7122):1038–1043

    CAS  PubMed  Google Scholar 

  30. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci U S A 71(4):1250–1254

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214(4526):1244–1246

    CAS  PubMed  Google Scholar 

  32. Brinster RL, Chen HY, Trumbauer M, Senear AW, Warren R, Palmiter RD (1981) Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27(1 Pt 2):223–231, doi:0092-8674(81)90376-7 [pii]

    CAS  PubMed  Google Scholar 

  33. Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294(5836):92–94

    CAS  PubMed  Google Scholar 

  34. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292(5819):154–156

    CAS  PubMed  Google Scholar 

  35. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78(12):7634–7638

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bradley A, Evans M, Kaufman MH, Robertson E (1984) Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309(5965):255–256

    CAS  PubMed  Google Scholar 

  37. Gossler A, Doetschman T, Korn R, Serfling E, Kemler R (1986) Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc Natl Acad Sci U S A 83(23):9065–9069

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317(6034):230–234

    CAS  PubMed  Google Scholar 

  39. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330(6148):576–578. doi:10.1038/330576a0

    CAS  PubMed  Google Scholar 

  40. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512, doi: 0092-8674(87)90646-5 [pii]

    CAS  PubMed  Google Scholar 

  41. Hanahan D, Wagner EF, Palmiter RD (2007) The origins of oncomice: a history of the first transgenic mice genetically engineered to develop cancer. Genes Dev 21(18):2258–2270, doi: 21/18/2258 [pii] 10.1101/gad.1583307

    CAS  PubMed  Google Scholar 

  42. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318(6046):533–538

    CAS  PubMed  Google Scholar 

  43. Campaner S, Amati B (2012) Two sides of the Myc-induced DNA damage response: from tumor suppression to tumor maintenance. Cell Div 7(1):6, doi: 1747-1028-7-6 [pii] 10.1186/1747-1028-7-6

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Adams JM (1985) Oncogene activation by fusion of chromosomes in leukaemia. Nature 315(6020):541–542

    CAS  PubMed  Google Scholar 

  45. Langdon WY, Harris AW, Cory S, Adams JM (1986) The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 47(1):11–18, doi: 0092-8674(86)90361-2 [pii]

    CAS  PubMed  Google Scholar 

  46. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM (1988) The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 167(2):353–371

    CAS  PubMed  Google Scholar 

  47. Nakamura T, Pichel JG, Williams-Simons L, Westphal H (1995) An apoptotic defect in lens differentiation caused by human p53 is rescued by a mutant allele. Proc Natl Acad Sci U S A 92(13):6142–6146

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Godley LA, Kopp JB, Eckhaus M, Paglino JJ, Owens J, Varmus HE (1996) Wild-type p53 transgenic mice exhibit altered differentiation of the ureteric bud and possess small kidneys. Genes Dev 10(7):836–850

    CAS  PubMed  Google Scholar 

  49. Allemand I, Anglo A, Jeantet AY, Cerutti I, May E (1999) Testicular wild-type p53 expression in transgenic mice induces spermiogenesis alterations ranging from differentiation defects to apoptosis. Oncogene 18(47):6521–6530. doi:10.1038/sj.onc.1203052

    CAS  PubMed  Google Scholar 

  50. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y, Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A 89(18):8794–8797

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Garcia-Cao I, Garcia-Cao M, Martin-Caballero J, Criado LM, Klatt P, Flores JM, Weill JC, Blasco MA, Serrano M (2002) “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally. EMBO J 21(22):6225–6235

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Lopez-Contreras AJ, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O (2012) An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. J Exp Med 209(3):455–461, doi: jem.20112147 [pii] 10.1084/jem.20112147

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Outwin E, Carpenter G, Bi W, Withers MA, Lupski JR, O’Driscoll M (2011) Increased RPA1 gene dosage affects genomic stability potentially contributing to 17p13.3 duplication syndrome. PLoS Genet 7(8):e1002247, doi: 10.1371/journal.pgen.1002247 PGENETICS-D-11-00206 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251, doi: 10.1038/418244a 418244a [pii]

    CAS  PubMed  Google Scholar 

  55. Dickins RA, McJunkin K, Hernando E, Premsrirut PK, Krizhanovsky V, Burgess DJ, Kim SY, Cordon-Cardo C, Zender L, Hannon GJ, Lowe SW (2007) Tissue-specific and reversible RNA interference in transgenic mice. Nat Genet 39(7):914–921, doi: ng2045 [pii] 10.1038/ng2045

    CAS  PubMed  Google Scholar 

  56. McJunkin K, Mazurek A, Premsrirut PK, Zuber J, Dow LE, Simon J, Stillman B, Lowe SW (2011) Reversible suppression of an essential gene in adult mice using transgenic RNA interference. Proc Natl Acad Sci U S A 108(17):7113–7118, doi: 1104097108 [pii] 10.1073/pnas.1104097108

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Mak TW (1998) The Gene knockout facts book. Academic, San Diego, CA

    Google Scholar 

  58. Hall B, Limaye A, Kulkarni AB (2009) Overview: generation of gene knockout mice. Curr Protoc Cell Biol Chapter 19: Unit 19 12 19 12 11–17. doi: 10.1002/0471143030.cb1912s44

    Google Scholar 

  59. de Klein A, Muijtjens M, van Os R, Verhoeven Y, Smit B, Carr AM, Lehmann AR, Hoeijmakers JH (2000) Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol 10(8):479–482, doi: S0960-9822(00)00447-4 [pii]

    PubMed  Google Scholar 

  60. Brown EJ, Baltimore D (2000) ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14(4):397–402

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Brown EJ, Baltimore D (2003) Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17(5):615–628

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G, Zediak VP, Velez M, Bhandoola A, Brown EJ (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 1(1):113–126, doi: S1934-5909(07)00005-7 [pii] 10.1016/j.stem.2007.03.002

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci U S A 85(14):5166–5170

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Sternberg N, Hamilton D, Austin S, Yarmolinsky M, Hoess R (1981) Site-specific recombination and its role in the life cycle of bacteriophage P1. Cold Spring Harb Symp Quant Biol 45(Pt 1):297–309

    CAS  PubMed  Google Scholar 

  65. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr, Butel JS, Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356(6366):215–221. doi:10.1038/356215a0

    CAS  PubMed  Google Scholar 

  66. Johnson TM, Attardi LD (2006) Dissecting p53 tumor suppressor function in vivo through the analysis of genetically modified mice. Cell Death Differ 13(6):902–908, doi: 4401902 [pii] 10.1038/sj.cdd.4401902

    CAS  PubMed  Google Scholar 

  67. Sluss HK, Armata H, Gallant J, Jones SN (2004) Phosphorylation of serine 18 regulates distinct p53 functions in mice. Mol Cell Biol 24(3):976–984

    CAS  PubMed Central  PubMed  Google Scholar 

  68. MacPherson D, Kim J, Kim T, Rhee BK, Van Oostrom CT, DiTullio RA, Venere M, Halazonetis TD, Bronson R, De Vries A, Fleming M, Jacks T (2004) Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J 23(18):3689–3699, doi: 10.1038/sj.emboj.7600363 7600363 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Oliner JD, Pietenpol JA, Thiagalingam S, Gyuris J, Kinzler KW, Vogelstein B (1993) Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362(6423):857–860. doi:10.1038/362857a0

    CAS  PubMed  Google Scholar 

  70. Armata HL, Garlick DS, Sluss HK (2007) The ataxia telangiectasia-mutated target site Ser18 is required for p53-mediated tumor suppression. Cancer Res 67(24):11696–11703, doi: 67/24/11696 [pii] 10.1158/0008-5472.CAN-07-1610

    CAS  PubMed  Google Scholar 

  71. Chao C, Herr D, Chun J, Xu Y (2006) Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 25(11):2615–2622, doi: 7601167 [pii] 10.1038/sj.emboj.7601167

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506, doi: 10.1038/nature01368 nature01368 [pii]

    CAS  PubMed  Google Scholar 

  73. Pellegrini M, Celeste A, Difilippantonio S, Guo R, Wang W, Feigenbaum L, Nussenzweig A (2006) Autophosphorylation at serine 1987 is dispensable for murine Atm activation in vivo. Nature 443(7108):222–225, doi: nature05112 [pii] 10.1038/nature05112

    CAS  PubMed  Google Scholar 

  74. Murga M, Campaner S, Lopez-Contreras AJ, Toledo LI, Soria R, Montana MF, D’Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O (2011) Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nat Struct Mol Biol 18(12):1331–1335, doi: nsmb.2189 [pii] 10.1038/nsmb.2189

    CAS  PubMed  Google Scholar 

  75. Toledo LI, Murga M, Fernandez-Capetillo O (2011) Targeting ATR and Chk1 kinases for cancer treatment: a new model for new (and old) drugs. Mol Oncol 5(4):368–373, doi: S1574-7891(11)00075-5 [pii] 10.1016/j.molonc.2011.07.002

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F, Yang YP, Petukhova GV, Eckhaus M, Feigenbaum L, Manova K, Kruhlak M, Camerini-Otero RD, Sharan S, Nussenzweig M, Nussenzweig A (2005) Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7(7):675–685, doi: ncb1270 [pii] 10.1038/ncb1270

    CAS  PubMed  Google Scholar 

  77. Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S, Klijn C, van der Heijden I, van der Gulden H, Wientjens E, Pieterse M, Catteau A, Green P, Solomon E, Morris JR, Jonkers J (2011) BRCA1 RING function is essential for tumor suppression but dispensable for therapy resistance. Cancer Cell 20(6):797–809, doi: S1535-6108(11)00438-7 [pii] 10.1016/j.ccr.2011.11.014

    CAS  PubMed  Google Scholar 

  78. Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21(5):562–565, doi: 10.1038/nbt811 nbt811 [pii]

    PubMed  Google Scholar 

  79. von Melchner H, DeGregori JV, Rayburn H, Reddy S, Friedel C, Ruley HE (1992) Selective disruption of genes expressed in totipotent embryonal stem cells. Genes Dev 6(6):919–927

    Google Scholar 

  80. Forrester LM, Nagy A, Sam M, Watt A, Stevenson L, Bernstein A, Joyner AL, Wurst W (1996) An induction gene trap screen in embryonic stem cells: Identification of genes that respond to retinoic acid in vitro. Proc Natl Acad Sci U S A 93(4):1677–1682

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Morales JC, Xia Z, Lu T, Aldrich MB, Wang B, Rosales C, Kellems RE, Hittelman WN, Elledge SJ, Carpenter PB (2003) Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J Biol Chem 278(17):14971–14977, doi: 10.1074/jbc.M212484200 M212484200 [pii]

    CAS  PubMed  Google Scholar 

  82. Minter-Dykhouse K, Ward I, Huen MS, Chen J, Lou Z (2008) Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis. J Cell Biol 181(5):727–735, doi: jcb.200801083 [pii] 10.1083/jcb.200801083

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Bohgaki T, Bohgaki M, Cardoso R, Panier S, Zeegers D, Li L, Stewart GS, Sanchez O, Hande MP, Durocher D, Hakem A, Hakem R (2011) Genomic instability, defective spermatogenesis, immunodeficiency, and cancer in a mouse model of the RIDDLE syndrome. PLoS Genet 7(4):e1001381. doi:10.1371/journal.pgen.1001381

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342, doi: nature10163 [pii] 10.1038/nature10163

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308, doi: nprot.2013.143 [pii] 10.1038/nprot.2013.143

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379, doi: S0092-8674(13)01016-7 [pii] 10.1016/j.cell.2013.08.022

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918, doi: S0092-8674(13)00467-4 [pii] 10.1016/j.cell.2013.04.025

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Leeb M, Wutz A (2011) Derivation of haploid embryonic stem cells from mouse embryos. Nature 479(7371):131–134, doi: nature10448 [pii] 10.1038/nature10448

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Manis JP, Morales JC, Xia Z, Kutok JL, Alt FW, Carpenter PB (2004) 53BP1 links DNA damage-response pathways to immunoglobulin heavy chain class-switch recombination. Nat Immunol 5(5):481–487, doi: 10.1038/ni1067 ni1067 [pii]

    CAS  PubMed  Google Scholar 

  90. Rooney S, Sekiguchi J, Zhu C, Cheng HL, Manis J, Whitlow S, DeVido J, Foy D, Chaudhuri J, Lombard D, Alt FW (2002) Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol Cell 10(6):1379–1390, doi: S1097276502007554 [pii]

    CAS  PubMed  Google Scholar 

  91. McCarthy EE, Celebi JT, Baer R, Ludwig T (2003) Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability. Mol Cell Biol 23(14):5056–5063

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Shakya R, Szabolcs M, McCarthy E, Ospina E, Basso K, Nandula S, Murty V, Baer R, Ludwig T (2008) The basal-like mammary carcinomas induced by Brca1 or Bard1 inactivation implicate the BRCA1/BARD1 heterodimer in tumor suppression. Proc Natl Acad Sci U S A 105(19):7040–7045, doi: 0711032105 [pii] 10.1073/pnas.0711032105

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Luo G, Santoro IM, McDaniel LD, Nishijima I, Mills M, Youssoufian H, Vogel H, Schultz RA, Bradley A (2000) Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nat Genet 26(4):424–429. doi:10.1038/82548

    CAS  PubMed  Google Scholar 

  94. Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A, Wakeham A, Potter J, Reitmair A, Billia F, Firpo E, Hui CC, Roberts J, Rossant J, Mak TW (1996) The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85(7):1009–1023, doi: S0092-8674(00)81302-1 [pii]

    CAS  PubMed  Google Scholar 

  95. Liu X, Holstege H, van der Gulden H, Treur-Mulder M, Zevenhoven J, Velds A, Kerkhoven RM, van Vliet MH, Wessels LF, Peterse JL, Berns A, Jonkers J (2007) Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer. Proc Natl Acad Sci U S A 104(29):12111–12116, doi: 0702969104 [pii] 10.1073/pnas.0702969104

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T, Ikeda K, Nakayama K, Nakanishi M (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev 14(12):1439–1447

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Zaugg K, Su YW, Reilly PT, Moolani Y, Cheung CC, Hakem R, Hirao A, Liu Q, Elledge SJ, Mak TW (2007) Cross-talk between Chk1 and Chk2 in double-mutant thymocytes. Proc Natl Acad Sci U S A 104(10):3805–3810, doi: 0611584104 [pii] 10.1073/pnas.0611584104

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Hirao A, Kong YY, Matsuoka S, Wakeham A, Ruland J, Yoshida H, Liu D, Elledge SJ, Mak TW (2000) DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287(5459):1824–1827, doi:8333 [pii]

    CAS  PubMed  Google Scholar 

  99. van der Horst GT, Meira L, Gorgels TG, de Wit J, Velasco-Miguel S, Richardson JA, Kamp Y, Vreeswijk MP, Smit B, Bootsma D, Hoeijmakers JH, Friedberg EC (2002) UVB radiation-induced cancer predisposition in Cockayne syndrome group A (Csa) mutant mice. DNA Repair (Amst) 1(2):143–157, doi: S1568786401000106 [pii]

    Google Scholar 

  100. van der Horst GT, van Steeg H, Berg RJ, van Gool AJ, de Wit J, Weeda G, Morreau H, Beems RB, van Kreijl CF, de Gruijl FR, Bootsma D, Hoeijmakers JH (1997) Defective transcription-coupled repair in Cockayne syndrome B mice is associated with skin cancer predisposition. Cell 89(3):425–435, doi: S0092-8674(00)80223-8 [pii]

    PubMed  Google Scholar 

  101. Chen PL, Liu F, Cai S, Lin X, Li A, Chen Y, Gu B, Lee EY, Lee WH (2005) Inactivation of CtIP leads to early embryonic lethality mediated by G1 restraint and to tumorigenesis by haploid insufficiency. Mol Cell Biol 25(9):3535–3542, doi: 25/9/3535 [pii] 10.1128/MCB. 25.9.3535-3542.2005

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Kirchgessner CU, Patil CK, Evans JW, Cuomo CA, Fried LM, Carter T, Oettinger MA, Brown JM (1995) DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science 267(5201):1178–1183

    CAS  PubMed  Google Scholar 

  103. McWhir J, Selfridge J, Harrison DJ, Squires S, Melton DW (1993) Mice with DNA repair gene (ERCC-1) deficiency have elevated levels of p53, liver nuclear abnormalities and die before weaning. Nat Genet 5(3):217–224. doi:10.1038/ng1193-217

    CAS  PubMed  Google Scholar 

  104. Andressoo JO, Weeda G, de Wit J, Mitchell JR, Beems RB, van Steeg H, van der Horst GT, Hoeijmakers JH (2009) An Xpb mouse model for combined xeroderma pigmentosum and cockayne syndrome reveals progeroid features upon further attenuation of DNA repair. Mol Cell Biol 29(5):1276–1290, doi: MCB.01229-08 [pii] 10.1128/MCB. 01229-08

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Wong JC, Alon N, McKerlie C, Huang JR, Meyn MS, Buchwald M (2003) Targeted disruption of exons 1 to 6 of the Fanconi Anemia group A gene leads to growth retardation, strain-specific microphthalmia, meiotic defects and primordial germ cell hypoplasia. Hum Mol Genet 12(16):2063–2076

    CAS  PubMed  Google Scholar 

  106. Chen M, Tomkins DJ, Auerbach W, McKerlie C, Youssoufian H, Liu L, Gan O, Carreau M, Auerbach A, Groves T, Guidos CJ, Freedman MH, Cross J, Percy DH, Dick JE, Joyner AL, Buchwald M (1996) Inactivation of Fac in mice produces inducible chromosomal instability and reduced fertility reminiscent of Fanconi anaemia. Nat Genet 12(4):448–451. doi:10.1038/ng0496-448

    CAS  PubMed  Google Scholar 

  107. Whitney MA, Royle G, Low MJ, Kelly MA, Axthelm MK, Reifsteck C, Olson S, Braun RE, Heinrich MC, Rathbun RK, Bagby GC, Grompe M (1996) Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88(1):49–58

    CAS  PubMed  Google Scholar 

  108. Ludwig T, Chapman DL, Papaioannou VE, Efstratiadis A (1997) Targeted mutations of breast cancer susceptibility gene homologs in mice: lethal phenotypes of Brca1, Brca2, Brca1/Brca2, Brca1/p53, and Brca2/p53 nullizygous embryos. Genes Dev 11(10):1226–1241

    CAS  PubMed  Google Scholar 

  109. Suzuki A, de la Pompa JL, Hakem R, Elia A, Yoshida R, Mo R, Nishina H, Chuang T, Wakeham A, Itie A, Koo W, Billia P, Ho A, Fukumoto M, Hui CC, Mak TW (1997) Brca2 is required for embryonic cellular proliferation in the mouse. Genes Dev 11(10):1242–1252

    CAS  PubMed  Google Scholar 

  110. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A (2001) Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 29(4):418–425, doi: 10.1038/ng747 ng747 [pii]

    CAS  PubMed  Google Scholar 

  111. Pulliam-Leath AC, Ciccone SL, Nalepa G, Li X, Si Y, Miravalle L, Smith D, Yuan J, Li J, Anur P, Orazi A, Vance GH, Yang FC, Hanenberg H, Bagby GC, Clapp DW (2010) Genetic disruption of both Fancc and Fancg in mice recapitulates the hematopoietic manifestations of Fanconi anemia. Blood 116(16):2915–2920, doi: blood-2009-08-240747 [pii] 10.1182/blood-2009-08-240747

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Celeste A, Petersen S, Romanienko PJ, Fernandez-Capetillo O, Chen HT, Sedelnikova OA, Reina-San-Martin B, Coppola V, Meffre E, Difilippantonio MJ, Redon C, Pilch DR, Olaru A, Eckhaus M, Camerini-Otero RD, Tessarollo L, Livak F, Manova K, Bonner WM, Nussenzweig MC, Nussenzweig A (2002) Genomic instability in mice lacking histone H2AX. Science 296(5569):922–927, doi: 10.1126/science.1069398 1069398 [pii]

    CAS  PubMed  Google Scholar 

  113. Li GC, Ouyang H, Li X, Nagasawa H, Little JB, Chen DJ, Ling CC, Fuks Z, Cordon-Cardo C (1998) Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 2(1):1–8, doi: S1097-2765(00)80108-2 [pii]

    CAS  PubMed  Google Scholar 

  114. Difilippantonio MJ, Zhu J, Chen HT, Meffre E, Nussenzweig MC, Max EE, Ried T, Nussenzweig A (2000) DNA repair protein Ku80 suppresses chromosomal aberrations and malignant transformation. Nature 404(6777):510–514. doi:10.1038/35006670

    CAS  PubMed  Google Scholar 

  115. Frank KM, Sekiguchi JM, Seidl KJ, Swat W, Rathbun GA, Cheng HL, Davidson L, Kangaloo L, Alt FW (1998) Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV. Nature 396(6707):173–177. doi:10.1038/24172

    CAS  PubMed  Google Scholar 

  116. Rucci F, Notarangelo LD, Fazeli A, Patrizi L, Hickernell T, Paganini T, Coakley KM, Detre C, Keszei M, Walter JE, Feldman L, Cheng HL, Poliani PL, Wang JH, Balter BB, Recher M, Andersson EM, Zha S, Giliani S, Terhorst C, Alt FW, Yan CT (2010) Homozygous DNA ligase IV R278H mutation in mice leads to leaky SCID and represents a model for human LIG4 syndrome. Proc Natl Acad Sci U S A 107(7):3024–3029, doi: 0914865107 [pii] 10.1073/pnas.0914865107

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, Manis JP, van Deursen J, Nussenzweig A, Paull TT, Alt FW, Chen J (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21(2):187–200, doi: S1097-2765(05)01813-7 [pii] 10.1016/j.molcel.2005.11.025

    CAS  PubMed  Google Scholar 

  118. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, Yao X, Christie DM, Monell C, Arnheim N, Bradley A, Ashley T, Liskay RM (1996) Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat Genet 13(3):336–342. doi:10.1038/ng0796-336

    CAS  PubMed  Google Scholar 

  119. Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, Thomas J, Cheng J, Touchman JW, Green ED, Schwartzberg P, Collins FS, Cohen PE (2002) Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat Genet 31(4):385–390, doi:10.1038/ng931 ng931 [pii]

    CAS  PubMed  Google Scholar 

  120. Avdievich E, Reiss C, Scherer SJ, Zhang Y, Maier SM, Jin B, Hou H Jr, Rosenwald A, Riedmiller H, Kucherlapati R, Cohen PE, Edelmann W, Kneitz B (2008) Distinct effects of the recurrent Mlh1G67R mutation on MMR functions, cancer, and meiosis. Proc Natl Acad Sci U S A 105(11):4247–4252, doi: 0800276105 [pii] 10.1073/pnas.0800276105

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Theunissen JW, Kaplan MI, Hunt PA, Williams BR, Ferguson DO, Alt FW, Petrini JH (2003) Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 12(6):1511–1523, doi: S1097276503004556 [pii]

    CAS  PubMed  Google Scholar 

  122. de Wind N, Dekker M, Berns A, Radman M, te Riele H (1995) Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82(2):321–330, doi: 0092-8674(95)90319-4 [pii]

    PubMed  Google Scholar 

  123. Edelmann W, Yang K, Umar A, Heyer J, Lau K, Fan K, Liedtke W, Cohen PE, Kane MF, Lipford JR, Yu N, Crouse GF, Pollard JW, Kunkel T, Lipkin M, Kolodner R, Kucherlapati R (1997) Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell 91(4):467–477, doi: S0092-8674(00)80433-X [pii]

    CAS  PubMed  Google Scholar 

  124. McPherson JP, Lemmers B, Chahwan R, Pamidi A, Migon E, Matysiak-Zablocki E, Moynahan ME, Essers J, Hanada K, Poonepalli A, Sanchez-Sweatman O, Khokha R, Kanaar R, Jasin M, Hande MP, Hakem R (2004) Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 304(5678):1822–1826, doi: 10.1126/science.1094557 304/5678/1822 [pii]

    CAS  PubMed  Google Scholar 

  125. Zhu J, Petersen S, Tessarollo L, Nussenzweig A (2001) Targeted disruption of the Nijmegen breakage syndrome gene NBS1 leads to early embryonic lethality in mice. Curr Biol 11(2):105–109, doi: S0960-9822(01)00019-7 [pii]

    CAS  PubMed  Google Scholar 

  126. Demuth I, Frappart PO, Hildebrand G, Melchers A, Lobitz S, Stockl L, Varon R, Herceg Z, Sperling K, Wang ZQ, Digweed M (2004) An inducible null mutant murine model of Nijmegen breakage syndrome proves the essential function of NBS1 in chromosomal stability and cell viability. Hum Mol Genet 13(20):2385–2397, doi: 10.1093/hmg/ddh278 ddh278 [pii]

    CAS  PubMed  Google Scholar 

  127. Stracker TH, Morales M, Couto SS, Hussein H, Petrini JH (2007) The carboxy terminus of NBS1 is required for induction of apoptosis by the MRE11 complex. Nature 447(7141):218–221, doi: nature05740 [pii] 10.1038/nature05740

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Barboza JA, Liu G, Ju Z, El-Naggar AK, Lozano G (2006) p21 delays tumor onset by preservation of chromosomal stability. Proc Natl Acad Sci U S A 103(52):19842–19847, doi: 0606343104 [pii] 10.1073/pnas.0606343104

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Wang YA, Elson A, Leder P (1997) Loss of p21 increases sensitivity to ionizing radiation and delays the onset of lymphoma in atm-deficient mice. Proc Natl Acad Sci U S A 94(26):14590–14595

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Pieper AA, Brat DJ, Krug DK, Watkins CC, Gupta A, Blackshaw S, Verma A, Wang ZQ, Snyder SH (1999) Poly(ADP-ribose) polymerase-deficient mice are protected from streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 96(6):3059–3064

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Baker SM, Bronner CE, Zhang L, Plug AW, Robatzek M, Warren G, Elliott EA, Yu J, Ashley T, Arnheim N, Flavell RA, Liskay RM (1995) Male mice defective in the DNA mismatch repair gene PMS2 exhibit abnormal chromosome synapsis in meiosis. Cell 82(2):309–319, doi: 0092-8674(95)90318-6 [pii]

    CAS  PubMed  Google Scholar 

  132. Cho EA, Prindle MJ, Dressler GR (2003) BRCT domain-containing protein PTIP is essential for progression through mitosis. Mol Cell Biol 23(5):1666–1673

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, Filsuf D, Chen HT, Gazumyan A, Yamane A, Cho YW, Sun HW, Ge K, Peng W, Nussenzweig MC, Casellas R, Dressler GR, Zhao K, Nussenzweig A (2010) PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science 329(5994):917–923, doi: science.1187942 [pii] 10.1126/science.1187942

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Kuznetsov S, Pellegrini M, Shuda K, Fernandez-Capetillo O, Liu Y, Martin BK, Burkett S, Southon E, Pati D, Tessarollo L, West SC, Donovan PJ, Nussenzweig A, Sharan SK (2007) RAD51C deficiency in mice results in early prophase I arrest in males and sister chromatid separation at metaphase II in females. J Cell Biol 176(5):581–592, doi: jcb.200608130 [pii] 10.1083/jcb.200608130

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Couedel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD, Nussenzweig A, Essers J, Kanaar R, Li GC, Alt FW, Jasin M (2004) Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 18(11):1293–1304, doi: 10.1101/gad.1209204 18/11/1293 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW (2004) Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 18(11):1283–1292, doi: 10.1101/gad.1204304 18/11/1283 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Lebel M, Leder P (1998) A deletion within the murine Werner syndrome helicase induces sensitivity to inhibitors of topoisomerase and loss of cellular proliferative capacity. Proc Natl Acad Sci U S A 95(22):13097–13102

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Santos MA, Huen MS, Jankovic M, Chen HT, Lopez-Contreras AJ, Klein IA, Wong N, Barbancho JL, Fernandez-Capetillo O, Nussenzweig MC, Chen J, Nussenzweig A (2010) Class switching and meiotic defects in mice lacking the E3 ubiquitin ligase RNF8. J Exp Med 207(5):973–981, doi: jem.20092308 [pii] 10.1084/jem.20092308

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Wang Y, Putnam CD, Kane MF, Zhang W, Edelmann L, Russell R, Carrion DV, Chin L, Kucherlapati R, Kolodner RD, Edelmann W (2005) Mutation in Rpa1 results in defective DNA double-strand break repair, chromosomal instability and cancer in mice. Nat Genet 37(7):750–755, doi: ng1587 [pii] 10.1038/ng1587

    CAS  PubMed  Google Scholar 

  140. Ding H, Schertzer M, Wu X, Gertsenstein M, Selig S, Kammori M, Pourvali R, Poon S, Vulto I, Chavez E, Tam PP, Nagy A, Lansdorp PM (2004) Regulation of murine telomere length by Rtel: an essential gene encoding a helicase-like protein. Cell 117(7):873–886, doi: 10.1016/j.cell.2004.05.026 S0092867404005409 [pii]

    CAS  PubMed  Google Scholar 

  141. Wu X, Sandhu S, Ding H (2007) Establishment of conditional knockout alleles for the gene encoding the regulator of telomere length (RTEL). Genesis 45(12):788–792. doi:10.1002/dvg.20359

    CAS  PubMed  Google Scholar 

  142. Crossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PH, McIntyre RE, Gallagher F, Kettunen MI, Lewis DY, Brindle K, Arends MJ, Adams DJ, Patel KJ (2011) Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat Genet 43(2):147–152, doi: ng.752 [pii] 10.1038/ng.752

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Yamane K, Wu X, Chen J (2002) A DNA damage-regulated BRCT-containing protein, TopBP1, is required for cell survival. Mol Cell Biol 22(2):555–566

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Jeon Y, Ko E, Lee KY, Ko MJ, Park SY, Kang J, Jeon CH, Lee H, Hwang DS (2011) TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells. J Biol Chem 286(7):5414–5422, doi: M110.189704 [pii] 10.1074/jbc.M110.189704

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Li G, Alt FW, Cheng HL, Brush JW, Goff PH, Murphy MM, Franco S, Zhang Y, Zha S (2008) Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination. Mol Cell 31(5):631–640, doi: S1097-2765(08)00534-0 [pii] 10.1016/j.molcel.2008.07.017

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Zha S, Guo C, Boboila C, Oksenych V, Cheng HL, Zhang Y, Wesemann DR, Yuen G, Patel H, Goff PH, Dubois RL, Alt FW (2011) ATM damage response and XLF repair factor are functionally redundant in joining DNA breaks. Nature 469(7329):250–254, doi: nature09604 [pii] 10.1038/nature09604

    CAS  PubMed Central  PubMed  Google Scholar 

  147. de Boer J, de Wit J, van Steeg H, Berg RJ, Morreau H, Visser P, Lehmann AR, Duran M, Hoeijmakers JH, Weeda G (1998) A mouse model for the basal transcription/DNA repair syndrome trichothiodystrophy. Mol Cell 1(7):981–990, doi: S1097-2765(00)80098-2 [pii]

    PubMed  Google Scholar 

  148. Tian M, Shinkura R, Shinkura N, Alt FW (2004) Growth retardation, early death, and DNA repair defects in mice deficient for the nucleotide excision repair enzyme XPF. Mol Cell Biol 24(3):1200–1205

    CAS  PubMed Central  PubMed  Google Scholar 

  149. Shiomi N, Kito S, Oyama M, Matsunaga T, Harada YN, Ikawa M, Okabe M, Shiomi T (2004) Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method. Mol Cell Biol 24(9):3712–3719

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH, Cleaver JE, Pedersen RA (1999) Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 208(2):513–529, doi: S0012-1606(99)99232-1 [pii] 10.1006/dbio.1999.9232

    CAS  PubMed  Google Scholar 

  151. Gao Y, Sun Y, Frank KM, Dikkes P, Fujiwara Y, Seidl KJ, Sekiguchi JM, Rathbun GA, Swat W, Wang J, Bronson RT, Malynn BA, Bryans M, Zhu C, Chaudhuri J, Davidson L, Ferrini R, Stamato T, Orkin SH, Greenberg ME, Alt FW (1998) A critical role for DNA end-joining proteins in both lymphogenesis and neurogenesis. Cell 95(7):891–902, doi: S0092-8674(00)81714-6 [pii]

    CAS  PubMed  Google Scholar 

  152. Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K, Lopez-Otin C (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31(1):94–99, doi: 10.1038/ng871 ng871 [pii]

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in OF laboratory is supported by the Spanish Ministry of Science (SAF2011-23753), Association for International Cancer Research (12-0229), Fundació La Marató de TV3 (33/C(2013), Howard Hughes Medical Institute, and the European Research Council (ERC-210520). J. S. is a recipient of a predoctoral fellowship from the Spanish Government (FPI-2012). M. N. is funded by a predoctoral fellowship from the La Caixa Foundation. A. J. L. is a recipient of a postdoctoral fellowship from the Spanish Association Against Cancer (AECC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres J. Lopez-Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Specks, J., Nieto-Soler, M., Lopez-Contreras, A.J., Fernandez-Capetillo, O. (2015). Modeling the Study of DNA Damage Responses in Mice. In: Eferl, R., Casanova, E. (eds) Mouse Models of Cancer. Methods in Molecular Biology, vol 1267. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2297-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2297-0_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2296-3

  • Online ISBN: 978-1-4939-2297-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics